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In numerous real-life applications, nature-inspired population-based search algorithms have been applied to solve
numerical optimization problems. This paper focuses on a simple and powerful swarm optimizer, named Wild
Geese Algorithm (WGA), for large-scale global optimization whose efficiency and performance are verified using
large-scale test functions of IEEE CEC 2008 and CEC 2010 special sessions with high dimensions D = 100, 500,
1000. WGA is inspired by wild geese in nature and models various aspects of their life such as evolution, regular
cooperative migration, and fatality. The effectiveness of WGA for finding the global optimal solutions of high-
dimensional optimization problems is compared with that of other methods reported in the previous literature.
Experimental results show that the proposed WGA has an efficient performance in solving a range of large-scale
optimization problems, making it highly competitive among other large-scale optimization algorithms despite its
simpler structure and easier implementation. The source code of the proposed WGA algorithm is publicly

available at github.com/ebrahimakbary/WGA.

1. Introduction

Many practical optimization problems, which are called Large Scale
Global Optimization (LSGO) problems, deal with a lot of decision vari-
ables. Some practical LSGO problems are large-scale electronic systems
design, scheduling problems, vehicle routing in large-scale traffic net-
works, and inverse problem chemical kinetics. Many real-world optimi-
zation problems involve optimization of a large number of control
variables with various constraints. However, the classical mathematical
programming methods do not generally provide good solutions for
different optimization problems with different real-world complexities,
due to the huge size of the problems [1]. The global optimization per-
formance of the population-based algorithms often becomes weaker in
such problems with increasing the dimension and complexity of the
problem [2-4]. The practical large-scale optimization problems have
been modeled with different benchmark test functions such as those
presented in the CEC 2008 [5] and CEC 2010 [6].

Recently, many nature-inspired and population-based meta-heuristic
optimization algorithms have been presented to deal with LSGO
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problems with different real-world complexities such as nonlinearity,
non-smoothness,  non-convexity, mixed-integer = nature, non-
differentiability, etc. Some new nature-inspired optimization algo-
rithms for solving the practical large-scale optimization problems are
listed in Table 1. It should be mentioned that, the boldface rows of this
table, show the methods which were used in the comparative study with
the proposed WGA.

Wild geese have a long-distance, coordinated and organized travel,
which can be used as an inspiration for a very appropriate optimization
algorithm for high-dimension problems. Based on the general model of
wild geese’ lives, a novel algorithm called Wild Geese Algorithm (WGA)
is introduced in this paper, which have some main prominent charac-
teristics compared to the previous algorithms including:

e It is simple with low computational burden, and its implementation is
easily performed.

e It has proper and satisfactory power for different test functions, from
different groups.
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Table 1 Table 1 (continued)
Sumrflary of some new .naFure.-msplred optimization algorithms for solving the Ref. Year Abbreviation  Short Description Dimensions Real-
practical large-scale optimization problems. under study  world
Ref. Year Abbreviation ~ Short Description Dimensions Real- problem
under study  world [191 2013 GOjDE A Generalized 100, 200, No
problem Opposition based 500, 1000
[7] 2008 MLCC Multilevel 100, 500, No Differential
Cooperative 1000 Evolution enhanced
Coevolution with a self-adapting
[8] 2008  EPUS-PSO Efficient Population 100, 500, No parameter tuning
Utilization Strategy 1000 strategy
for Particle Swarm [20] 2013  EOEA A two-stage based 1000 Yes
Optimizer (PSO) enstem.ble‘
[9] 2008 sep-CMA-ES Covariance Matrix 100-1000 No Optlml?athH
Adaptation evolutionary
Evolution Strategy algorithm
having diagonal [21] 2014 FT-DNPSO PSO with dynamic 30, 100, No
covariance matrix neighborhood based 1000
[10] 2010 SOUPDE Shuffle or update 50, 100, No on kerr}el fuzzy
parallel differential 200, 500, clustering and
evolution 100 variable trust region
[11] 2010  CCVIL Cooperative 1000 No methods
Coevolution with [22] 2014 CBCC1-DG Two different 1000 No
Variable Interaction CBCC2-DG versions of
Learning DECC-DG Contribution Based
[12] 2010 eDECC-D eDifferential 100, 500, No Coopel:ative Co-
«DECC-DML Evolution with 1000 e‘{olutmrf and
Cooperative Co- lefere.ntlal )
evolution using Evolutlorf with
Delta-Grouping Cooperative Co-
eDifferential evolution, all with
Evolution with differential
Multilevel grouping
Cooperative Co- [23] 2015 CDE Continuous 200, 500, No
evolution using Differential 1000
Delta-Grouping Evolution‘ ‘
[13] 2010 GOBL Generalized 50, 100, No [24] 2015  CSO A Competitive 100, 500, No
Opposition-Based 200, 500, Swarm Optimizer 1000, 2000,
Learning 100 i 5000
[14] 2011  TSVP Tabu Search with 100, 400, No [25] 2016  SOMAQI Self Organizing 100, 500, No
Variable Partitioning 1000 Migrating Algorithm 1000, 2000,
[15] 2011  SP-UCI Shuffled complex 10, 50,100,  No with Quaqratm 3000
evolution with 1000 Interpolation
principal [26] 2018 MWOA A Modified Whale 100, 300, No
components Optimization 500, 1000
analysis—University Algorithm
of California at Irvine [27] 2019 EHO Enhanced Elephant 50, 100, No
[16] 2012 LMDEa Differential 1000 No Herding 200, 500,
Evolution with Optimization with 100
Landscape Modality Novel Individual
Detection and a Updating Strategies
Diversity Archive [28] 2019  SFO Sailfish Optimizer 300 Yes
[171 2012  DE-CCS Differential 500,1000 No [29] 2019  PRO Poor and rich 300 Yes
Evolution Algorithm optm.uzatlon
with Cooperative algorithm
Coevolutionary [30] 2019 EBA Ensemble Bat 100, 500, No
Selection Operator Algo.ri.thr.n 1000
[2] 2012  CCPSO2 A new Cooperative 1000 No [31] 2019 EO qu{lll!’rlum 10-200 Yes
Coevolving Particle optimizer
Swarm [32] 2020 NPO Nomadic People 100, 500, No
Optimization with a Optimizer 2000
new position [33] 2020 ISSA An improved Social 100, 500, No
update rule based Spider Algorithm 1000
on Cauchy and
Gaussian
distributions It is worth mentioning that although the proposed WGA may seem
[18] 2012  LSCBO Large Scale 100, 500, No imilar to PSO iallv due to th ist £ 1 best and global
Optimization Based 1000 siumilar to , especially due to the existence ol personal best and globa

on Co-ordinated
Bacterial Dynamics
and Opposite
Numbers

best concepts, it has some thorough distinctions of structure and
formulation, the main of which can be listed as follows:
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In WGA, all solutions are sorted based on their objective values so that
each member of population moves using information from its adja-
cent members in the sorted population.

2 In the proposed method, the formulation for calculating the velocity
of each goose is completely different from the PSO and is based on the
positions, velocities, and best positions of the goose and its adjacent
geese in the sorted population, as well as the global best solution's
position. While in PSO, the only parameter that is shared among all
solutions is the position of the global best solution.

3 In the proposed WGA, two different solutions are generated per so-
lution and are used for creating the next iteration's goose based on a
mechanism similar to the crossover operator of differential evolution.

4 Finally, in the proposed algorithm, a population reduction policy is

implemented which is accomplished by fatality (elimination) of the

weakest goose of the population.

The rest of this paper is organized as follows. Section 2 presents the
new proposed algorithm for large-scale optimization problems. Section 3
shows the experimental results. Finally, Section 4 presents the
conclusions.

2. The proposed algorithm: Wild Geese Algorithm

In recent years, some new algorithm inspired from group movement
and group search by animals have been proposed for large-scale global
continuous optimization [1]. In this paper, based on the different phases
of wild geese's lives, including their rhythmic and coordinated group
migration, reproduction and evolution and also deaths in the population
of geese, a new efficient algorithm, named as Wild Geese Algorithm
(WGA), is presented for high-dimensional optimization problems. In
Fig. 1, a group ordered migration based on the position of wild geese is
shown. In general, the proposed WGA phases are as follows:

1 Ordered and coordinated group migration (or migration and
displacement velocity phase)

2 Walking and searching for food by wild geese.

3 Reproduction and evolution of wild geese.

4 Death, migration and ordered evolution of wild geese.

First, an initial population of wild geese are created, so that the po-
sition vector of the i-th wild goose is equal to x;. The best local position or
personal best solution p; and migration velocity v;are determined. Then,
all wild geese populations are sorted from the best to the worst according
to their target function.

In this modeling strategy, each wild goose exploits information from
its adjacent wild geese in the ordered population, and is directed by those
individuals. The phases of WGA are further discussed in the subsequent
subsections.

2.1. An ordered and coordinated group migration (or migration and
displacement velocity phase)

As it is observed in Fig. 1, migration of wild geese is a group, coor-
dinated, ordered and under control migration, which is based on reach-
ing the upfront and adjacent individuals in the sorted population.
Velocity and displacement equations according to the coordinated ve-
locity of the geese are given in Eq. (1) and Eq. (2).

lrer+1 __ ler lier Iier
Via = (rld X Vig t 124X <V1+1d_"x 1d>>
Iter ter er ter
+r3a X (ptd xg—l,d) + 7aa X (pmd _)Hi,d> @

'ter ter Iter ter
+rsa X (Rﬂd"dﬂd) —Fea X ( Pi-1a _“\JHM)
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Fig. 1. An ordered and coordinated migration of wild geese.

where x; 4, pi g, and v; 4 are the dth dimension of the current position, the
best position, and the current velocity of the ith wild goose, respectively.
Note that in this study, rig,k =1,2,...,11 are uniformly distributed
random numbers between 0 and 1.

As observed in Eq. (1), the velocity and position changes of each wild
goose (for instance i-th wild goose) depend on the velocities of their
upfront and rear members, i.e (VI%¥; —v*]), and also to the positions of its
adjacent members.

According to the model from the migration of wild geese in Fig. 2 and
Eq. (1), the wild geese use information from their adjacent individuals in
the sorted population, as patterns for their movement and navigation,
and tend to reach those members (reduce their distances), i.e. x{ff; -
P 31 — i 5 — pl, and xf%, — — .

Addltlonally, the global best member is used as another guide for the
movements of the whole flock; which is reflected in Eq. (2). This position
change is carried out in an ordered form and coordinated with the
upfront members in order to model the movement of all members as an
ordered series, as shown in Figs. 1 and 2.

Xy =l < rsa x (4 + Pl =2 xpliy) Vi) @
where g, is the global best position among all members.

2.2. Walking and searching for food by wild geese

This step is modeled in such a way that the i-th wild goose moves
towards its upfront member, i.e. the (i+1)-th goose (pf* — p ). In
another word, the i-th goose tries to reach the (i+1)-th goose (pi — pr).
The equation for walking and searching for food by the wild goose, x}V' is

as follows:

=D+ Tog X riga X (P,ﬁd Pf’fj’) 3

2.3. Reproduction and evolution of wild geese

Another stage of wild geese's life is reproduction and evolution. In this
paper, its modeling is performed so that a combination between migra-
tion equation (xiV ) and walking and search for food equation (xiW ) is used.
The Cr value for the proposed WGA algorithm is 0.5 in total simulations.

X, if 140 <Cr
)di.i;rJrl _{ id 1d = (4)

w

x!, otherwise.
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Fig. 2. The model of ordered and coordinated group migration of wild geese.
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2.4. Death, migration and ordered evolution

The previous experiments from the literature show that for different
optimization algorithms the population number and the iteration number
do not have the same level of influence on solving every types of prob-
lems. For some functions, the size of algorithm's population is more
important and more effective than the number of algorithm's iterations
(e.g. F2 and F3 functions), and for some other functions the number of
algorithm's iterations is more important and more effective than the size
of WGA algorithm's population (e.g. F7 and F8 functions). In this paper,
to overcome this problem and establish a compromised solution, the
death phase is employed in order to balance algorithm performance for
all test functions. In this phase, the algorithm starts with the maximum
population number Np™@®@ and during the algorithm iterations, the
weaker members will be removed from the population based on Eq. (5)
and the population size will decrease linearly so that it reaches its final
value Np"® in the final iteration.

Npmmal

Np =round - FE. &)
_ ((prmnal _ Npﬁnal)ic ( S > >

FEsmax

where FEs and FEs,,, are the number of function evaluations and its
maximum.

Algorithm 1
Demonstrates the optimization process of WGA.

Algorithm 1:
1: to set values of the control parameters of WGA;
2: to generate the initial population (whose number are equal to Np™"@) and V=1 =
(0;
3: to evaluate the fitness of each population individual and FEs = Np™tdl;
4: to find the personal best position of all particles Np™i (i = 1, 2, ..., Np™itial) in
swarm P;and the global best position G;
5: while the FEs till FEsyq, do
6: Wild Goose populations are arranged from the best to the worst according to
Fig. 2;
7: for i =1 (best) to Np (worst) do
8: Select the sorted members i — 1th, i+ 1th, and i + 2th;
{** An ordered and coordinated group migration based on Eq. (1) and Eq. (2) **}
9:ford =1 to D do
10: VIl  Eq. (1);
11: end for
12: ford =1 to D do
13: xY; < Eq. (2);
14: end for
{** Walking and search geese Eq. (3) **}
15: ford =1 to D do
16: x% < Eq. (3);
17: end for
{** Reproduction and evolution Eq. (4) **}
18: ford =1 to D do

(continued on next column)

Algorithm 1 (continued)

19: Xertl  Eq. (4);
20: end for
21: if X1 < xiin
22: X{_‘g”l - x"i"f";
23: end if
24 if x[er 1 > xmax
25: x{tgrﬂ - x:jnax;
26: end if
27: to evaluate the fitness of X/ *1
28 F(XI ) < f(PIr)
20: P{ter+1 <—X{wr+l;
30: end if
31:if f(PPr 1) < £(G)
32: G « plertl;
33: end if
34: end for
35: FEs = FEs + Np;
36: Np < Eq. (5);
37: end while

3. Results and analysis of experimental evaluation studies

In this section, 20 widely used large scale test functions are exploited
to show the efficiency and performance of the proposed algorithm. The
formulation and characteristics of all CEC 2010 benchmark test functions
are listed in Ref. [6].

The performance and robustness of WGA for solving real and large-
scale optimization problems are characterized by two indices: 1) the
mean of best values of test function (Mean), and 2) the standard deviation
(Std) indices.

Test functions include 1. Separable functions (F1 — F3), 2. Single-
group m-nonseparable functions (F4 — F8), 3. 2-group m-nonseparable
functions (F9 — F13), 4. %group m-nonseparable functions (F14 — F18),
and 5. non-separable functions (F19 — F20), where m is the number of
variables in each non-separable subcomponent, and D and m are assumed
as 1000 and 50, respectively. To show the efficiency of WGA, in all
simulations of this paper, 25 independent simulations are used in each
section for every test function, as in Refs. [6,22]. Furthermore, in all
simulations, the maximum number of fitness evaluations FES;q, is 3 X
10°. In all tables, the + sign means the algorithm outperforms WGA, the
— sign means WGA outperforms the algorithm, and the = sign means
WGA and the considered algorithm yield the same solution for the given
problem. It should be mentioned that, in all results tables, the boldface is
used to emphasize the algorithm that achieves the best Mean index value
for each problem.

3.1. Experimental setup

3.1.1. Influence of death phase on WGA performance
At first, to show the performance of the population reduction by death
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Table 2
Average fitness values and standard deviations of results for test functions over
25 independent runs.

F WGA, Np = 30 WGA, Np =120 WGA

F1 1.68E-21 2.33E-24 1.05E-26
7.71E-22 1.58E-24 2.56E-26
3 2 1

F2 7.78E+03 2.18E + 03 2.28E+03
7.95E+01 1.14E + 01 4.58E+01
3 1 2

F3 1.00E+01 1.17E-13 1.47E-13
1.25E+01 7.40E-15 8.94E-15
3 1 2

F4 3.81E + 11 9.99E+11 5.15E+11
1.63E + 11 1.05E+11 7.89E+10
1 3 2

F5 9.55E+07 5.74E+07 5.47E + 07
7.04E+06 3.68E+06 7.93E + 06
3 2 1

F6 1.98E+01 3.56E-09 3.55E-09
2.50E-02 1.40E-15 5.48E-14
3 2 1

F7 8.01E-02 4.47E+03 4.60E+00
2.00E-02 1.69E+03 6.28E+00
1 3 2

F8 8.60E + 06 4.30E+07 9.16E+06
3.16E + 05 2.74E+07 8.79E+06
1 3 2

F9 2.54E+07 4.55E+07 2.21E + 07
1.33E+06 5.50E+06 1.51E + 06
2 3 1

F10 4.67E+03 1.76E + 03 2.64E+03
1.60E+02 2.48E + 01 2.70E+01
3 1 2

F11 8.94E+01 2.34E-13 3.06E-13
7.77E+00 1.07E-14 5.48E-14
3 1 2

F12 1.62E + 03 3.25E+04 4.15E+03
1.30E + 02 1.40E+03 2.40E+02
1 3 2

F13 9.11E+02 9.87E+02 6.87E + 02
1.93E+02 1.50E+02 2.63E + 01
2 3 1

F14 7.51E + 07 1.52E+08 7.67E+07
5.36E + 06 1.24E407 4.55E+06
1 3 2

F15 5.28E+03 4.21E+03 3.14E + 03
3.79E+02 1.01E4-02 5.42E + 01
3 2 1

F16 2.69E+02 7.63E+00 3.79E + 00
1.37E+01 2.95E+00 6.26E-01
3 2 1

F17 1.41E + 04 1.47E+05 3.74E+04
6.23E + 02 7.77E+03 1.36E+02
1 3 2

F18 2.11E+03 4.15E+03 1.52E + 03
1.47E+03 1.56E+03 2.93E + 02
2 3 1

F19 8.73E + 05 1.35E+06 1.04E+06
1.03E + 05 5.17E+04 2.85E+04
1 3 2

F20 1.58E+03 1.15E+03 1.04E + 03
7.71E+01 2.42E+01 8.18E + 01
3 2 1

Nb/Nw/Mr 7/10/2.15 4/10/2.3 10/0/1.55

of Wild Geese, WGA is tested without considering the death phase and is
tested with a large population Np = 120 and a small population Np = 30.
The suitable results were compared with those of WGA (considering
population reduction from Np = 120 (Np™i=120) to Np = 30
(Np"?=30) using Eq. (5), where the results obtained for each function
are listed in Table 2. The results demonstrate that the proposed death
phase improves the efficiency of WGA for high-dimensional problems.
The positive influence of death phase can be especially observed for test

Array 11 (2021) 100074

functions F3, F6, F7, F11, F12, F16, and F17. Moreover, the convergence
characteristics of this algorithm for 6 different functions of various types
are depicted in Fig. 3, which verify the effectiveness of implementing
death phase in WGA.

3.1.2. Why Cr = 0.5 in WGA for all test functions?

In this paper Cr = 0.5 is used for all simulations. To select a suitable
value for Cr four different constant values other than 0.5, i.e. 0.1, 0.25,
0.75 and 0.9 are tested, whose results are presented in Table 3. As
observed, the constant value 0.5 is the best value for different test
functions of CEC 2010. It should be mentioned that in all simulation
results tables, three values are reported for optimizing each test function
with each algorithm; the first two demonstrate the average and standard
deviation of fitness values of the obtained results. The third value shows
the rank of that algorithm in terms of the mean index. Furthermore, three
parameters are reported for each algorithm in all tables, i.e. Ny, Ny, M.
Np and N,, are the number of times the algorithm yields the best and the
worst mean index, respectively; and M, is the average rank of the algo-
rithm achieved in solving all considered test functions.

3.2. Comparing WGA with recent optimization algorithms

3.2.1. CEC 2008 test functions

In this section, the results of WGA are compared with those of a series
of the recently proposed optimization algorithms for large-scale prob-
lems from CEC 2008 test functions with different high dimensions
including D = 100, D = 500 and D = 1000. The formulation and char-
acteristics of CEC'08 benchmark test functions are listed in Ref. [5] and
Table 4:

Two indices are exploited in this study to characterize the perfor-
mance and robustness of WGA for solving real and large-scale optimi-
zation problems with different dimensions: 1) mean of the best values of
test function (Mean), and 2) standard deviation (Std). Tables 5-7 show
the final best solutions of test functions’ optimization by WGA and those
of large scale optimization algorithms including CSO [24], CCPSO2 [2],
sep-CMA-ES [9], MLCC [7], and EPUS-PSO [8]. As seen, the proposed
WGA is able to provide very efficient and competitive results in solving
real and large-scale problems compared with the previously proposed
algorithms. WGA proves itself as a promising technique for real and large
scale shifted unimodal and multimodal optimization problems.

3.2.2. CEC 2010 test functions

As mentioned in the introduction section of this paper, numerous
researches have been recently performed to achieve some algorithms and
meta-heuristic optimization methods for high-dimension optimization
problems. These studies and many other methods have been introduced
to find a simple and quick method with the low computational burden. In
Table 8, the results of previous researches for 20 different test functions
of CEC 2010 with D = 1000 are summarized [22], which was obtained
with the same conditions as those of WGA. The summarized algorithms in
Table 8 include MLCC algorithm [7], differential evolution with coop-
erative co-evolution and delta grouping DECC-D and DECC-DML [12],
contribution based cooperative co-evolution and differential grouping
CBCC1-DG and CBCC2-DG [22], differential evolution with cooperative
co-evolution and random grouping (DECC-DG) [22]. The last two rows of
Table 8 present the comparative indices for these algorithms.

The WGA algorithm has achieved the best results in 12 of 20 func-
tions, i.e. F4, F5, F6, F7, F9, F10, F13, F14, F15, F17, F18, and F19. In
addition, for none of the test functions WGA has the worst results.
Moreover, WGA reaches the best average rank (M;). The proposed al-
gorithm (WGA) outperforms MLCC algorithm in 18 out of 20 functions;
only for the first two functions MLCC algorithm performs better. For the
first function the average value of WGA is very close to that of MLCC
algorithm. MLCC algorithm has different results for different test func-
tions and has the worst results for 6 out of 20 functions. However, the
proposed algorithm has acceptable and suitable results for most of the
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WGANp=30
------- WGANp=120
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9
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WGANp=30
=e=emes WGANp=120
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(b)F5

WGANp=30
WGANp=120
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(d)F9

WGANp=30

GANp=120
GANp=120 t0 30

Mean Value of Best (log)

0 0.5 1 15 2 25 |
Function Evaluations

(HF20

Fig. 3. Average convergence of WGA on nine selected test functions over 25 independent runs.

test functions and dispersion of its results are less than those of the other
algorithms. The comparison between WGA and DECC-D algorithm shows
that WGA performs better for 18 out of 20 functions. Nonetheless, for
functions F2 and F20, it gives a worse result compared to that of DECC-D.
For function F2, the average value of WGA is very close to that obtained
from DECC-D algorithm. Furthermore, DECC-D algorithm does not pro-
vide a good quality solution for different test functions, for example for
F2 and F20 it has suitable results, but for F5 — F8, F10 — F12, and F15—
F17 its results are not acceptable compared to those of other algorithms.
Although DECC-DML algorithm outperforms WGA for five test functions,
it has the worst solution for six functions. CBCC1-DG and CBCC2-DG
algorithms are more successful than WGA for two and three functions,
respectively; however, CBCC1-DG gives the best result for none of the
functions and CBCC2-DG yields the best result for only function. DECC-
DG algorithm performs better than WGA for 2 out of 20 test functions;
however, it gives the worst solution for 4 test functions among all
algorithms.

3.2.3. Test on real-world optimization problems

Here, the effectiveness of the proposed algorithm (WGA) was inves-
tigated compared to genetic algorithm (GL-25) [34], DE with strategy
adaptation (SaDE) [35], DE with control components and composite trial
vector generation approaches (CoDE) [36], Standard particle swarm
optimization (SPS02013) [37], and heterogeneous comprehensive
learning PSO with improved exploitation and exploration (HCLPSO) [38]
on real-world usages including estimating the factor for
frequency-modulated (FM) sound waves [39] and large-scale reliabili-
ty-redundancy allocation optimization (RRAO) of a gas turbine [40].

1) Estimating the factor for frequency modulated sound waves

The greatly complex multimodal frequency-modulated (FM) sound
synthesis optimizing problem plays a key role in various modern music
systems for estimating the optimal factors of a FM sound wave synthesis
[39]. The estimation of optimal factors of an FM sound wave synthesis is
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Table 3
Average fitness values and standard deviations on test functions over 25 inde-
pendent runs.

F Cr=0.1 Cr=0.25 Cr=0.75 Cr=09 Cr=0.5

F1 3.12E+07 3.77E-06 5.24E+09 5.00E+10 1.05E-26
7.41E+07 1.63E-07 1.03E+09 2.29E+10 2.56E-26
3 2, 4 5, 1

F4 1.17E+12 7.26E+11 4.96E+13 2.48E+14 5.15E+11
7.40E+11 9.64E+10 8.22E+13 5.31E+13 7.89E+10
3- 2,- 4, 5- 1

F9 1.39E+10 9.04E+07 1.03E+10 6.71E+10 2.21E4-07
8.22E+09 2.76E+08 7.50E+09 2.56E+10 1.51E+06
4,— 2,- 3- 5 1

F14 3.04E+10 2.71E+09 3.19E+09 1.55E+11 7.67E4-07
2.61E+10 1.26E409 4.54E+09 1.23E+11 4.55E+4-06
4, 2,- 3- 5 1

F20 1.50E+10 1.03E4-03 1.17E+11 6.53E+11 1.04E+03
4.20E+09 5.15E4+01 3.73E+09 3.90E+09 8.18E+01
3,- 1,+ 4, 5, 2

—/+/ = 5/0/0 4/1/0 5/0/0 5/0/0 -

Nb/Nw/Mr 0/0/3.4 1/0/1.8 0/0/3.6 0/0/5 4/0/1.2

Table 4

Summary of CEC 08 Special Session benchmark test functions [5] for large scale
global optimization.

Function  Name Properties Search Global
space optimum
il Shifted Sphere Unimodal, separable, [-100, 0
scalable 100]

fa Shifted Unimodal, non- [-100, 0
Schwefel's separable, scalable 100]

f3 Shifted Multimodal, non- [-100, 0
Rosenbrock's separable, scalable 100]

fa Shifted Multimodal, [-5, 5] 0
Rastrigin's separable, scalable

fs Shifted Multimodal, non- [-600, 0
Griewank's separable, scalable 600]

fe Shifted Ackley's Multimodal, [-32, 32] 0

separable, scalable

an optimization problem with D decision variables. In this work, the case
of D = 6 is only considered in accordance with [41,42]. Six components
are included in the 6-dimensional parameter vector as x = [xj(ay),
xo(w1), x3(az), x4(w2), xs(as), xe¢(ws)] ranging between 6.35 and 6.5 for
all variables. The equations provided for the target and approximated
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sound waves for t defined in range of 1-100 are as follows [42]:

y(1) = x; sin(x220 + x5 sin(x420 + x5 sin(xs16))), 6)
Yo(t) = 1.0*sin(0.5¢0 — 1.5 * sin(4.810 + 2.0 * sin(4.916))), @
where 6 = 2%

The optimization problem objective function is considered as the sum
of squared errors between y(t)(the approximated wave) and y,(t) (the
target wave) with optimal value f(x) = 0 as follows:

100

FE)= () = yo0)). ®

=0

2) RRAO constrained problem:

The nonlinear reliability-redundancy constrained optimization
problems are mainly aimed at enhancing the system reliability (maxi-
mizing the overall system reliability) through optimizing element re-
liabilities vector (r = (r1, 1o, ..., I'py)) and redundancy assignment numbers
vector (n= (ny, ny, ..., Ny)) for subsystems of the system. It is possible to
formulate this problem as a nonlinear mixed-integer programming model
by choosing the system reliability as the objective function to be maxi-
mized subjecting to several nonlinear constraints as follows [40]:

Maximize R, =f(r, n), ©

subject to g(r, n) <1, 10)
0<r,<1l,n ez, 0<d<m.
where Z" is the set of positive integers, Ry represents the reliability of
various systems, f(.) and g(.) denote for the objective and constraint
functions of RRAO problem for the total parallel-series systems, respec-
tively, from which g(.) is usually related to the system cost, weight and
volume. n= (my, ny, ..., Ny) and r = (ry, 1o, ..., 'y) show the redundancy
allocation numbers and component reliabilities vectors for system's
subsystems including m subsystems, respectively. Moreover, [ shows the
limit of the system resources.

The overspeed detection was continually offered by the mechanical
and electrical systems. By occurring an overspeed, the fuel source must
be stopped through control valves (V7 to Vp,). Fig. 4 represents a gas
turbine's overspeed protection system for RRAO optimizing the mixed-
integer non-linear problem. The large-scale test structure involves 40

Table 5
Results obtained by optimization algorithms for dimension 100 over 25 independent runs.

F D =100
CCPSO2 [2] CSO [24] sep-CMA-ES [9] MLCC [7] EPUS-PSO [8] ISSA [33] EO [31] WGA

F1 7.73E-14 9.11E-29 9.02E-15 6.82E-14 7.47E-01 0 1.31E-20 0
3.23E-14 1.10E-28 5.53E-15 2.32E-14 1.70E-01 0 5.01E-20 0
6,- 2- 4,- 5,- 7, 1,= 3.- 1

F2 6.08E+00 3.35E+01 2.31E+01 2.53E+01 1.86E+01 8.31E+01 4.29E+01 2.14E-05
7.83E+00 5.38E+00 1.39E+01 8.73E+00 2.26E+0 1.91 E+01 3.69E+00 3.08E-05
2,- 6,- 4,- 5,- 3,- 8,- 7,- 1

F3 4.23E+02 3.90E+02 4.31E + 00 1.50E+02 4.99E+03 1.68E+402 9.21E+01 1.04E+402
8.65E+02 5.53E+02 1.26E + 01 5.72E+01 5.35E+03 9.46E+01 8.97E+01 4.01E+01
7,- 6,- 1, + 4,- 8,- 5,- 2,+ 3

F4 3.98E-02 5.60E+01 2.78E+02 4.39E-13 4.71E+02 5.00E+00 6.04E+02 1.25E402
1.99E-01 7.48E+00 3.43E+01 9.21E-14 5.94E+01 6.60E+00 8.52E+01 1.41E+01
2,4+ 4,+ 6,- 1,+ 7,- 3+ 8,- 5

F5 3.45E-03 0 2.96E-04 3.41E-14 3.72E-01 0 9.58E-02 0
4.88E-03 0 1.48E-03 1.16E-14 5.60E-02 0 1.02E-01 0
4,- 1, = 3,- 2,- 6,- 1, = 5,- 1

F6 1.44E-13 1.20E-014 2.12E+01 1.11E-13 2.06E+00 2.09E+01 2.05E+01 1.39E-014
3.06E-14 1.52E-015 4.02E-01 7.87E-15 4.40E-01 2.99E-02 1.73E-01 1.23E-015
4,- 1,+ 8,- 3,- 6,- 7,- 5,- 2

—/+/ = 5/1/0 3/2/1 5/1/0 5/1/0 6/0/0 3/1/2 5/1/0 -

Nb/Nw/Mr 0/0/4.167 2/0/3.333 1/1/4.333 1/0/3.333 0/4/6.167 2/1/4.167 0/1/5 3/0/2.333
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Table 6
Results obtained by optimization algorithms for dimension 500 over 25 independent runs.
F D =500
CCPSO2 [2] CSO [24] sep-CMA-ES [9] MLCC [7] EPUS-PSO [8] ISSA [33] EO [31] WGA
F1 3.00E-13 6.57E-23 2.25E-14 4.30E-13 8.45E+01 9.90E-28 4.14E-04 0.00E + 00
7.96E-14 3.90E-24 6.10E-15 3.31E-14 6.40E-+00 9.95E-28 3.87E-04 0.00E + 00
5,- 3,- 4,- 6,- 8,- 2,- 7, 1
F2 5.79E+01 2.60E + 01 2.12E+02 6.67E+01 4.35E+01 2.66E+02 9.34E+01 5.73E+01
4.21E+01 2.40E + 00 1.74E+01 5.70E+00 5.51E-01 1.92E+01 3.01E-01 8.72E+00
4,- 1,+ 7, 5,- 2,+ 8,- 6,- 3
F3 7.24E+02 5.74E+02 2.93E + 02 9.25E+02 5.77E+04 8.31E+14 1.95E+03 5.22E+02
1.54E+02 1.67E+02 3.59E + 01 1.73E+02 8.04E+03 3.11E+14 1.04E+03 3.60E+01
6,- 4,- 1,+ 7, 5,- 8,- 3,- 2
F4 3.98E-02 3.19E+02 2.18E+03 1.79E-11 3.49E+03 2.07E+03 3.78E+03 1.25E402
1.99E-01 2.16E+01 1.51E+02 6.31E-11 1.12E+02 5.38E+02 1.46E+02 1.41E+01
2,+ 4,- 6,- 1,+ 7,- 5,- 8,- 3
F5 1.18E-03 2.22E-16 7.88E-04 2.13E-13 1.64E400 4.48E-02 2.42E-01 4.12E-16
4.61E-03 0.00E + 00 2.82E-03 2.48E-14 4.69E-02 1.29E-01 6.11E-01 5.36E-17
5,- 1,+ 4, 3, 8, 6, 7, 2
F6 5.34E-13 4.13E-13 2.15E+01 5.34E-13 6.64E+00 2.14E+01 2.06E+01 5.77E-14
8.61E-14 1.10E-14 3.10E-01 7.01E-14 4.49E-01 1.70E-02 3.35E-01 1.58E-15
3, 2, 7, 3,- 4,- 6,- 5,- 1,+
—/+/ = 5/1/0 4/2/0 5/1/0 5/1/0 5/1/0 6/0/0 6/0/0 -
Nb/Nw/Mr 0/0/4.167 2/0/2.5 1/2/4.833 1/1/4.167 0/3/5.667 0/2/5.833 0/1/6 2/0/2
Table 7
Results obtained by optimization algorithms for dimension D = 1000 over 25 independent runs.
F D = 1000
CCPSO2 [2] CSO [24] sep-CMA-ES [9] MLCC [7] EPUS-PSO [8] ISSA [33] EO [31] WGA
F1 5.18E-13 1.09E-21 7.81E-15 8.46E-13 5.53E+02 2.09E-18 1.35E+04 1.75E-28
9.61E-14 4.20E-23 1.52E-15 5.01E-14 2.86E+01 3.95E-18 6.94E+03 1.27E-28
5,- 2,- 4,- 6,- 7, 3,- 8,- 1
F2 7.82E+01 4.15E + 01 3.65E+02 1.09E4-02 4.66E+01 3.10E+-02 1.64E402 7.43E+01
4.25E4+01 9.74E-01 9.02E+00 4.75E+00 4.00E-01 1.38E+01 1.16E+02 4.89E+00
4,- 1,+ 8,- 5,- 2,+ 7, 6,- 3
F3 1.33E403 1.01E403 9.10E + 02 1.80E+03 8.37E+05 2.17E+15 2.58E+09 1.00E+03
2.63E+02 3.02E+01 4.54E + 01 1.58E+402 1.52E405 6.89E+13 2.63E+09 8.25E+01
4,- 3,- 1,+ 5,- 6,- 8,- 7, 2
F4 1.99E-01 6.89E+02 5.31E+03 1.37E-10 7.58E+03 1.49E+04 7.79E+03 2.52E+03
4.06E-01 3.10E+01 2.48E+02 3.37E-10 1.51E4-02 1.93E+03 1.01E402 1.34E402
2,+ 3,+ 5,- 1,+ 6,- 8,- 7,- 4
F5 1.18E-03 2.26E-16 3.94E-04 4.18E-13 5.89E+00 3.10E-01 4.07E+01 1.22E-15
3.27E-03 2.18E-17 1.97E-03 2.78E-14 3.91E-01 4.51E-01 5.39E+01 2.91E-16
5, 1,+ 4, 3, 7, 6,- 8,- 2
F6 1.02E-12 1.21E-12 2.15E+01 1.06E-12 1.89E+01 2.15E+01 2.05E+01 1.21E-13
1.68E-13 2.64E-14 3.19E-01 7.68E-14 2.49E+00 7.70E-03 1.40E-01 5.18E-15
2,- 4. 5, 3, 6,- 8,- 7, 1
—/+/ = 5/1/0 3/3/0 5/1/0 5/1/0 5/1/0 6/0/0 6/0/0 -
Nb/Nw/Mr 0/0/3.667 2/0/2.33 1/1/4.5 1/0/3.833 0/0/5.667 0/3/6.667 0/2/7.167 2/0/2.167

decision variables (m*2 = 40). The input factors and data for the large-

scale test system are provided in Ref. [43] with 20 subsystems.

It is possible to formulate this reliability optimization problem as:

m

Maximize f5(r, n) = H[l — (1 =ry)™].

05<r,< (1710’(’)7 0<d<m

d=1

1<n; < 10,€Z+.

represents the upper volume limit of the products of the subsystem.

2) The system cost limitationg(r, n):

gz(h n) _ Zc(rd) [nd + eO.ZS;u} < C,

d=1

13)

The system constraints include:

1) The combined weight, volume, and redundancy allocation con-
straintg; (r, n):

gilr, m)=y Vi, <V 12
d=1

where v4 shows the volume of dth subsystem for all components and V

C(rd):ad<f r )ﬁ“.

In ry
where, C shows the upper cost limit of the system, C(ry) is the cost for all

element with reliability ry at dth stage, and T is the operating time in
which the components are working.

3) The system weight limitationgs(r, n):

ga(r, )= wange"?" < W (14)

d=1
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Table 8
Average fitness values and standard deviations on CEC 2010 functions over 25 independent runs.
F MLCC [7] DECG-D [12] DECC-DML [12] CBCC1-DG [22] CBCC2-DG [22] DECC-DG [22] WGA
F1 1.53E-27 1.01E-24 1.93E-25 1.32E+04 8.34E+03 5.47E+03 1.05E-26
7.66E-27 1.40E-25 1.86E-25 6.25E+04 3.41E+04 2.02E+04 2.56E-26
1,+ 4, 3, 7, 6, 5,- 2
F2 5.57E-01 2.99E+02 2.17E+02 4.44E+03 4.44E+03 4.39E+03 2.28E+03
2.21E + 00 1.92E+01 2.98E+01 1.60E+02 1.80E+02 1.97E+02 4.58E+01
1,+ 3+ 2+ 6,- 6,- 5, 4
F3 9.88E-13 1.81E-13 1.18E-13 1.66E+01 1.67E+01 1.67E+01 1.47E-13
3.70E-12 6.68E-15 8.22E-15 3.79E-01 3.28E-01 3.34E-01 8.94E-15
4, 3, 1,+ 5,- 6, 6, 2
F4 9.61E+12 3.99E+12 3.58E+12 2.31E+12 2.36E+12 4.79E+12 5.15E + 11
3.43E+12 1.30E+12 1.54E+12 7.43E+11 7.92E+11 1.44E+12 7.89E + 10
7, 5,- 4, 2- 3, 6, 1
F5 3.84E+08 4.16E+08 2.98E+08 1.35E+08 1.36E+08 1.55E+08 5.47E + 07
6.93E+07 1.01E+08 9.31E4+07 2.18E+07 2.46E+07 2.17E+07 7.93E + 06
6,- 7, 5,- 2,- 3,- 4, 1
F6 1.62E+07 1.36E+07 7.93E+05 1.65E+01 1.64E+01 1.64E+01 3.55E-09
4.97E+06 9.20E+06 3.97E+06 3.99E-01 3.46E-01 2.71E-01 5.48E-14
6,- 5,- 4, 3,- 2, 2,- 1
F7 6.89E+05 6.58E+07 1.39E+08 1.81E+04 1.35E+04 1.16E+04 4.60E + 00
7.37E+05 4.06E+07 7.72E+07 4.59E+04 3.92E+04 7.41E4+03 6.28E + 00
5,- 6,- 7, 4, 3,- 2,- 1
F8 4.38E+07 5.39E+07 3.46E+07 3.34E+06 8.70E + 05 3.04E+07 9.16E+06
3.45E+07 2.93E+07 3.56E+07 2.29E+06 1.71E + 06 2.11E+07 8.79E+06
7, 6,- 5.- 2,4+ 1,+ 4,- 3
F9 1.23E+08 6.19E+07 5.92E+07 6.79E+07 7.97E+07 5.96E+07 2.21E + 07
1.33E+07 6.43E+06 4.71E+06 6.92E+06 1.08E+07 8.18E+06 1.51E + 06
7,- 4,- 2,- 5,- 6,- 3,- 1
F10 3.43E+03 1.16E+04 1.25E+04 4.01E+03 4.04E+03 4.52E+03 2.64E + 03
8.72E+02 2.68E+03 2.66E+02 1.37E+02 1.21E+02 1.41E+02 2.70E + 01
2,- 6,- 7,- 3,- 4,- 5,- 1
F11 1.98E+02 4.76E+01 1.80E-13 1.05E+01 1.03E+01 1.03E401 3.06E-13
6.98E-01 9.53E+01 9.88E-15 9.31E-01 8.47E-01 1.01E+00 5.48E-14
6,- 5,- 1,+ 4,- 3,- 3,- 2
F12 3.49E+04 1.53E+05 3.79E+06 4.19E+03 4.00E+03 2.52E + 03 4.15E4+03
4.92E+03 1.23E+04 1.50E+05 1.25E+03 8.63E+02 4.86E + 02 2.40E+02
5,- 6,- 7, 4,- 2,4+ 1,+ 3
F13 2.08E+03 9.87E+02 1.14E403 9.10E+03 4.54E+03 4.54E+06 6.87E + 02
7.27E+02 2.41E+02 4.31E402 3.75E+03 1.91E+03 2.13E+06 2.63E + 01
4, 2,- 3,- 6,- 5,- 7, 1
F14 3.16E+08 1.98E+08 1.89E+08 3.64E+08 3.69E+08 3.41E+08 7.67E + 07
2.77E+07 1.45E+07 1.49E+4-07 2.61E+07 2.42E+07 2.41E+07 4.55E + 06
4,- 3,- 2,- 6,- 7, 5,- 1
F15 7.11E+03 1.53E+04 1.54E+04 5.89E+03 5.88E+03 5.88E+03 3.14E + 03
1.34E+03 3.92E+02 3.59E+02 9.10E+01 8.81E+01 1.03E402 5.42E + 01
4, 5,- 6,- 3,- 2, 2,- 1
F16 3.76E+02 1.88E+02 5.08E-02 3.08E-12 4.44E-12 7.39E-13 3.79E+00
4.71E+01 2.16E+02 2.54E-01 3.19E-12 4.22E-13 5.70E-14 6.26E-01
7, 6,- 4,4 2,4+ 3,4+ 1,+ 5
F17 1.59E+05 9.03E+05 6.54E+06 4.50E+04 4.73E+04 4.01E+04 3.74E + 04
1.43E+04 5.28E+04 4.63E+05 3.18E+03 2.77E+03 2.85E+03 1.36E + 02
5,- 6,- 7,- 3,- 4,- 2,- 1
F18 7.09E+03 2.12E+03 2.47E+03 1.34E+09 3.47E+08 1.11E+10 1.52E + 03
4.77E+03 5.18E+02 1.18E+403 4.94E+08 1.39E+08 2.04E+09 2.93E + 02
4- 2,- 3,- 6,- 5,- 7,- 1
F19 1.36E+06 1.33E+07 1.59E+07 1.74E+06 1.74E+06 1.74E+06 1.04E + 06
7.35E+04 1.05E+06 1.72E+06 8.46E+04 8.46E+04 9.54E+04 2.85E + 04
2,- 4,- 5,- 3,- 3,- 3,- 1
F20 2.05E+03 9.91E + 02 9.91E + 02 9.53E+04 8.42E+03 4.87E+07 1.04E+03
1.80E+02 2.61E + 01 3.51E + 01 1.02E+05 2.36E+03 2.27E+07 8.18E+01
3, 1,+ 1,+ 5,- 4- 6,- 2
—/+/ = 18/2/0 18/2/0 15/5/0 18/2/0 17/3/0 18/2/0 -
Nb/Nw/Mr 2/6/4.5 1/1/4.45 3/6/3.95 0/2/4.05 1/3/3.9 2/4/3.95 12/0/1.75
The proposed WGA algorithm and the other 5 algorithms are applied deviation) of different algorithms executed in 30 runs for solving the two
in these two real-world problems. For comparative studies, FEs;,, are problems. The best results are shown in boldface, which indicate that
adjusted to 5.00E+04 and a large enough population size is chosen for all WGA provides efficient and better performance compared to the other 5
algorithms. Table 9 presents the optimization results (mean and standard advanced algorithms for real-world optimization problems.
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Fig. 4. The diagram block for a gas turbine's overspeed protection system.

Table 9
Average fitness values and standard deviations on real-world optimization
problems.

Algorithms Problem 1 Problem 2
Mean Std Mean Std

GL-25 4.05E+000 9.83E+000 8.634E-001 8.114E-001

SaDE 2.72E+000 6.65E-+000 8.898E-001 2.875E-002

CoDE 3.19E+000 8.54E-+000 8.882E-001 6.155E-001

SPS02013 7.64E+000 1.15E4+001 8.730E-001 6.058E-001

HCLPSO 5.38E+000 1.29E+001 8.875E-001 1.464E-001

WGA 1.23E-007 1.08E-007 8.915E-001 9.628E-004

4. Conclusion

The proposed Wild Goose Algorithm (WGA) is a simple and effective
algorithm that has been designed and proposed for optimization of high-
dimensional problems. This algorithm, which is inspired by wild geese
found in nature, includes ordered and coordinated group migration,
reproduction and evolution of geese, and also death in the population of
geese. To show the performance of the proposed WGA algorithm for
optimization of high-dimension problems, it is tested and compared with
sep-CMA-ES, CCPSO2, CSO, EPUS-PSO, MLCC, DECCD, DECC-DML,
CBCC2-DG, CBCC1-DG and DECC-DG algorithms based on the func-
tions of CEC 2008 and CEC 2010. One of the advantages of WGA is that it
has only one control parameter, Cr. It is experimentally shown that WGA
has better competitive results with respect to other mentioned algo-
rithms, and outperforms all other algorithms for most of the test func-
tions. Furthermore, WGA is a simple and basic algorithm for large-scale
optimization which can be used for various real-world optimization
problems. In recent years, numerous studies have been carried out in the
area of high-dimension optimization, the most of which focused on
cooperative co-evolution technique. In future, WGA may be embedded
into the frameworks of different CC methods with various categories in
order to improve its performance. Furthermore, WGA can be used for
solving other real-world large-scale optimization problems.
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