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Abstract Registration of point sets is done by finding a rotation and translation that
produces a best fit between a set of data points and a set of model points. We use
robust M-estimation techniques to limit the influence of outliers, more specifically
a modified version of the iterative closest point algorithm where we use iteratively
re-weighed least squares to incorporate the robustness. We prove convergence with
respect to the value of the objective function for this algorithm. A comparison is also
done of different criterion functions to figure out their abilities to do appropriate point
set fits, when the sets of data points contains outliers. The robust methods prove to be
superior to least squares minimization in this setting.
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1 Introduction

The problem of registering point sets, considered in this paper, is that of finding a
rigid body transformation, consisting of a rotation and translation, such that it trans-
forms a set of data points to a set of model points producing a best fit between the
point sets. A common application where this kind of registration problem needs to
be solved, is image reconstruction of shape measurements, see e.g. [22,23], where
partially overlapping images acquired from different views are to be merged. Another
similar application is free-form surface inspection, see e.g. [4,32], where a set of data
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points representing a measured shape of an object is to be aligned to its ideal shape
represented by a CAD-model. There are applications in other areas as well. Finger
print verification is one, see e.g. [11]. One use in chemistry, is described in [1,14],
where protein structures are aligned.

The most commonly used method for doing the registration of point sets, are all
based on the iterative closest point (ICP) algorithm [3,30,31], where the closest model
points to the data points are to be found in each iteration. In most application these
points are in R

2 or R
3 but higher dimensions are possible as well.

Real-world applications that are prone to measurement errors and disturbing back-
ground, benefit from the use of robust methods, as considered in e.g. [5,16,18,21,25,
26,33]. If robust methods are not used, the registration runs the risk of being spoiled
by deviant and incorrect data, since least squares algorithms are highly sensitive to
gross errors in the data

A least median of squares (LMS or LMedS) version of the ICP algorithm is used
in [12,15,16]. The LMS estimates are very robust and are not affected by up to 50 %
outliers. A drawback is the multitude of local minima that the method introduces.

Weighting of point-pairs is one of the robust registration methods discussed in
[6,21]. The method is based on assigning different weights to different point-pairs
and a weighted least squares problem is then solved. Lower weights are assigned
to point-pairs that seem to be outliers. These weights may be based on the distance
between the points or some quality values of the data points obtained from their source.

Another method discussed in [21] is rejection of point-pairs. That method is quite
similar to weighting of point-pairs but the weights are either one or zero. These rejected
point-pairs can be point-pairs with an inner distance larger than a given distance apart
[27] or the n % of point-pairs with largest distance [20]. This distance must be deter-
mined somehow in the first case and computational time must be spent determining
which of the point-pairs that belongs to these n % in the second case. Another rejection
method discussed in [27] is based on rejection of point-pairs with a model point on
the boundary to the model. It gives a geometry dependent rejection method. Using a
rejection method “good” data might also be rejected.

A method using the Levenberg–Marquardt algorithm, LM-ICP, is presented in [5].
It is applied directly on the squared sum of shortest distances, so the Levenberg–
Marquardt step is used for the rigid body transformation step. What is required though
is the gradient at the iteration point, which either must be approximated at considerable
computational cost, or estimated from a precomputed customized data structure. A
good point of the LM-ICP algorithm, is that it makes it is easy to introduce robust
estimators.

In our paper we show that is easy to introduce robust M-estimators in the traditional
ICP algorithm, and still have a convergent algorithm.

The algorithm that we analyze is a version of the ICP algorithm that uses iteratively
re-weighed least squares (IRLS), which has previously been touched upon in e.g.
[25]. IRLS is widely used in robust linear regression, see e.g. [9,28,29]. From a
computational point of view this method is very similar to the method of weighting
of point-pairs, but the weights are obtained from an M-estimation criterion. A scaling
of the residuals is needed in order to define what a large residual is. In each iteration
we are determining a scale parameter for fixed residuals. An update of the rigid body

123



Iteratively reweighted least squares

transformation is then found while the scale parameter is kept unchanged. The standard
deviation of the error of the “good” data that represents what it is supposed to represent
pretty well is assumed to be known. It should be given from knowledge about the
acquirement of the data or by some other assumptions.

2 Robust registration of point sets

In the following we will consider robust registration of point sets in R
3, but the reason-

ing is valid for other dimensions as well. We want to find a rigid body transformation
consisting of a rotation matrix R ∈ {R3×3|RTR = I, det (R) = +1} and a translation
vector t ∈ R

3 that fits a set of N data points, {pi }N
i=1 to a set of model points X ,

i.e. we want to solve a registration problem. A robust M-estimate of the rigid body
transformation using a robust criterion function� : R → [0,∞) is obtained by solving

min
R,t

f (R, t) , (1)

where

f (R, t) =
N∑

i=1

�(d(Rpi + t, X)) , (2)

and d is a distance operator defined by

d(p, X) = min
y∈X

‖p − y‖2 .

An essential property of a robust criterion function � is that it reduces undesired
influence of data with gross errors on the estimation. We make a formal definition of a
set of criterion functions Q for which we are proving convergence. The derivative of �
is denoted with ψ , ψ(r) = �′(r),which is the standard notation in robust statistics. A
criterion function � belongs to the set Q if and only if all of the following conditions
are fulfilled:

1. �(r) is an even function and C1-continuous on R, and �(0) = 0,
2. �(r) is monotonically increasing on [0,∞),
3. ψ(r)/r is monotonically decreasing and bounded above on (0,∞).

Since the function � is even and continuously differentiable, its derivative at zero
satisfies ψ(0) = 0. The second derivative �′′(0) = ψ ′(0) is always defined and
bounded above. Criterion functions in Q are monotonically increasing on [0,∞) so
that ψ(r) ≥ 0 is satisfied for all r ≥ 0.

A weight function w is defined as

w(r) =

⎧
⎪⎨

⎪⎩

ψ(r)

r
if r �= 0,

lim
r→0

ψ(r)

r
= ψ ′(0) if r = 0.

(3)
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From the definition of Q it follows that the weight functionw associated to � ∈ Q is an
even and non-negative function which is bounded above and monotonically decreasing
on [0,∞). A property of w(r) is that w(r)r = ψ(r) holds for all r ∈ R.

Huber’s function �Hu, Cauchy’s function �Ca, and Tukey’s bi-weight function �Tu
are examples of robust criterion functions in Q. These functions, their derivatives, and
corresponding weight functions are as follows:

– Huber’s function

�Hu(r) =
{

1
2r2 if|r | ≤ κHu

κHu|r | − κ2
Hu
2 if|r | > κHu

ψHu(r) =
{

r if|r | ≤ κHu
sgn(r)κHu if|r | > κHu

wHu(r) =
{

1 if|r | ≤ κHu
κHu|r | if|r | > κHu

– Cauchy’s function

�Ca(r) = κ2
Ca

2
log

(
1 +

(
r

κCa

)2
)

ψCa(r) = r

1 +
(

r
κCa

)2

wCa(r) = 1

1 +
(

r
κCa

)2

– Tukey’s bi-weight function

�Tu(r) =
⎧
⎨

⎩

κ2
Tu
6

{
1 − (

1 − r2

κ2
Tu

)3} if |r | ≤ κTu

κ2
Tu
6 if |r | > κTu

ψTu(r) =
{

r
(
1 − r2

κ2
Tu
)2 if |r | ≤ κTu

0 if |r | > κTu

wTu(r) =
{(

1 − r2

κ2
Tu
)2 if |r | ≤ κTu

0 if |r | > κTu

These three criterion functions, which are plotted in Fig. 1, have different robust prop-
erties with respect to handling data with occasional gross errors, when estimating
parameters. Tukey’s bi-weight criterion function has the strongest protection of high
influence caused by this kind of undesired data, which are excluded in the minimiza-
tion. Cauchy’s criterion function also has a strong protection against influence from
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Fig. 1 Three robust criterion
functions, Huber’s function,
Cauchy’s function, and Tukey’s
bi-weight function

Algorithm 1 The IRLS-ICP algorithm
/* Operations are performed for all i = 1, . . . , N */

Require: {pi }, X , weight function w, R(0) = I, t(0) = 0

k = 0, p(0)i = R(0)pi + t(0)

repeat
k = k + 1

y(k−1)
i = C(p(k−1)

i , X)

wi = w(‖p(k−1)
i − y(k−1)

i ‖2)

if any wi > 0 then
[
R∗, t∗

] = arg min
R,t

N∑
i=1

wi ‖Rp(k−1)
i + t − y(k−1)

i ‖2
2

p(k)i = R∗p(k−1)
i + t∗

R(k)= R∗R(k−1)

t(k) = R∗t(k−1) + t∗
else /* all wi = 0 */

p(k)i = p(k−1)
i

R(k)= R(k−1)

t(k) = t(k−1)

Terminate iterations
end if

until convergence
return R(k) , t(k)

outliers. Huber’s criterion function is convex, and thus does not introduce local min-
ima to the same extent. While it still is robust, it does not completely dis-regard highly
deviating points, as Tukey’s function does.

We solve (1) using criterion functions from Q, and associated weight function w
defined in (3), using the IRLS-ICP algorithm, presented in Algorithm 1. It operates in
two principal stages in each iteration. These stages are; finding closest model points
to the data points, and finding a rigid body transformation such that the data points are
fitted to the closest model points. An initial rigid body transformation, (R(0), t(0)), is
required. In the testing phase we use R(0) = I and t(0) = 0, but if there is any prior
knowledge that can be utilized, the algorithm benefits greatly from it. In Algorithm 1
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we use the notation C to denote a closest point operator. That is y(k−1)
i = C(p(k−1)

i , X)

is the closest model point in X to a transformed data point, p(k−1)
i = R(k−1)pi +t(k−1).

To make the notation simpler we will drop the superscript with the iteration index
where it is convenient. In Algorithm 1 the update (R∗, t∗) of the transformation is
obtained from

[
R∗, t∗

] = arg min
R,t

g(R, t) , (4)

where

g(R, t) =
N∑

i=1

wi‖Rpi + t − yi‖2
2. (5)

This is a weighted rigid body transformation problem considered in e.g. [17]. There
always exists a solution set for this problem since wi ≥ 0 for i = 1, . . . , N . The
un-weighted rigid body transformation problem is discussed in e.g. [2,8,24]. Let

ŵ =
N∑

i=1

wi , p̄ = 1

ŵ

N∑

i=1

wi pi , ȳ = 1

ŵ

N∑

i=1

wi yi ,

where p̄ and ȳ are weighted arithmetical mean values of the data points {pi } and the
closest model points {yi }. We replace t with a new independent vector u by the change
of variables t = −Rp̄ + ȳ + u. Thus the function g in (5) expressed in terms of R and
u is

N∑

i=1

wi‖Rpi − Rp̄ + ȳ + u − yi‖2
2, (6)

which can be expressed in terms of scalar products as

N∑

i=1

wi (R(pi − p̄)− (yi − ȳ)+ u)T(R(pi − p̄)− (yi − ȳ)+ u) .

Since both the sum of all wi (pi − p̄) and the sum of all wi (yi − ȳ) are equal to the
zero vector their scalar product with u vanish. The expression above can therefore be
simplified to

N∑

i=1

wi‖pi − p̄‖2
2 +

N∑

i=1

wi‖yi − ȳ‖2
2 + ŵ‖u‖2

2 − 2ŵ trace(RC) , (7)
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where

C = 1

ŵ

N∑

i=1

[
wi pi yT

i

]
− p̄ȳT ∈ R

3×3 .

Obviously this is minimized by u∗ = 0 and by searching for an R that maximizes
trace(RC). Finding this R∗ is analogous to the un-weighted rigid body transformation
problem, see e.g. [2,8,24]. The rotation matrix R∗ is usually found from a singular
value decomposition of C, C = U�VT, from which we form R∗ = VUT. In some
rare degenerate cases this may however produce a reflection matrix (det(VUT) = −1),
which we correct by reevaluating the matrix as R∗ = V diag(1, 1,−1)UT. From the
calculated R∗ and u∗ = 0, in the change of variables expression, we obtain the
translation vector t∗ = ȳ − R∗p̄.

3 Convergence analysis

We define a function

φ(u) = �(
√

u) ,

where u > 0. A first order Taylor approximation ϕ(u) of φ(u) about u = v is
ϕ(u) = φ(v)+ φ′(v)(u − v), which is equivalent to

ϕ(u) = φ(v)− φ′(v)v + φ′(v)u.

The derivative above is

φ′(v) = ψ(
√
v)

2
√
v
.

We have that �(s) = φ(s2) and a quadratic approximation to �(s) about s = r is

η(s, r) =
{
�(r)− ψ(r)

2 r + ψ(r)
2r s2 if r �= 0,

ψ ′(0)
2 s2 if r = 0,

(8)

which satisfies η(s, r) = �(r) and ∂
∂s η(s, r) = ψ(r) at s = r , and ∂

∂s η(s, r) =
w(r)s ∀s, r ∈ R.

Lemma 1 For all criterion functions � ∈ Q the corresponding quadratic approxima-
tion η(s, r) fulfills η(s, r) ≥ �(s) ∀s, r ∈ R.

Proof We introduce a function δ(s) = η(s, r)− �(s) and we will prove that this C 1-
continuous function δ(s) satisfies δ(s) ≥ 0. Since η(r, r) = �(r) is fulfilled it follows
that δ(r) = 0 and η(s, r) ≥ �(s) is true when s = r . Now assume that s, r ≥ 0 and
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s �= r . From the mean value theorem and since δ(s)−δ(r) = δ(s) it follows that there
must exist a point q > 0 between r and s such that

δ(s) = δ′(q)(s − r) ,

where the derivative δ′(q) can be written as

δ′(q) = q
(
w(r)− w(q)

)
.

If 0 ≤ r < q < s then (s −r) > 0 and from the third condition in the definition of Q it
follows thatw(r)−w(q) ≥ 0 and hence, δ′(q) ≥ 0. If 0 ≤ s < q < r then (s−r) < 0
and δ ′(q) ≤ 0 using the same argument as before. Thus, δ(s) = δ′(q)(s − r) ≥ 0 and
it is proved that η(s, r) ≥ �(s) for all s, r ≥ 0. Both η(s, r) and �(s) are even with
respect to s. Therefore, we have η(s, r) ≥ �(s) for all r ≥ 0 and for all s ∈ R. Since
the derivative ψ is an odd function the function η(s, r) is even with respect to r as
well. Hence, we also have that η(s, r) ≥ �(s) holds for all r ≤ 0 and for all s ∈ R. It
follows that η(s, r) ≥ �(s) ∀s, r ∈ R. 
�

To eventually arrive at a decreasing sequence of objective function values, we need
to establish some properties that follow from the quadratic approximation. Let si be a
function of a transformation (R, t), defined by si = si (R, t) = ‖Rpi + t − yi‖2, and
let ri here be a fixed value of si given by ri = si (I, 0). It follows from (3) and (8) that
the problem

min
R,t

N∑

i=1

η(si (R, t), ri ) , (9)

is exactly the same as the problem

min
R,t

{
N∑

i=1

(
�(ri )− ψ(ri )

2
ri

)
+ 1

2

N∑

i=1

w(ri )s
2
i (R, t)

}
.

We can easily see that the problem

min
R,t

N∑

i=1

w(ri )s
2
i (R, t) , (10)

must share the same solution set and have the same properties as the two previous
problems since the objective function differs only with a constant factor of one half and
a sum which is independent of the transformation (R, t). The minimization problem
in (10) is the same as the minimization problem in (4). There always exists a solution
set for these minimization problems since w ≥ 0.
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A rigid body transformation in R
3 can be parameterized by six variables. The

optimality conditions are investigated by introducing the parameterization

z = [ω1, ω2, ω3, t1, t2, t3]T,

where ω1, ω2, ω3 are angles of rotations about the coordinate axes and t1, t2, t3 are
translations in x, y, z-directions respectively. The residual in term i , ri = ‖Rpi + t −
yi‖2, can be written as a function of z, i.e. ri = ri (z). Hence, the functions f and g
can both be expressed by z as f = f (z) and g = g(z). We consider the derivative of
ri with respect to z j , j = 1, . . . , 6, as zero if ri = 0. The optimality condition for f
is

∇ f =
N∑

i=1

ψ(ri )∇ri = 0, (11)

and the optimality condition for g is

∇g = 2
N∑

i=1

wi ri∇ri = 0. (12)

If the weight functionw(r) in (3) is used, these two optimality conditions are equivalent
since w(ri )ri = ψ(ri ) for all ri , thus validating our choice of weight function. Also
note that after applying (4), the condition ∇g = 0, will be fulfilled.

The derivative of ri with respect to z j is undefined when ri = 0. This does not
cause any troubles though, since ψ is continuous and ψ(0) = 0, and thus the terms of
∇ f and ∇g for the zero residuals vanish.

Theorem 1 The IRLS-ICP algorithm, presented in Algorithm 1, converges to a local
extremum of the objective function f in (2) and the sequence of function values fk over
the iterations k = 1, 2, . . . is monotonically decreasing to the value at the extremum
for all criterion functions � ∈ Q using the weight function w(r) defined in (3).

Proof We let the index i goes from 1 to N , i.e. i = 1, . . . , N . The set of model points
X and the set of data points {p(k−1)

i } from iteration k −1 are given. Compute the set of

closest model points, y(k−1)
i = C(p(k−1)

i , X), residuals r (k−1)
i = ‖p(k−1)

i − y(k−1)
i ‖2,

and weights, wi = w(r (k−1)
i ). The value fk−1 of the objective function f for these

residuals is

fk−1 =
N∑

i=1

�
(

r (k−1)
i

)
.

Since η
(

r (k−1)
i , r (k−1)

i

)
= �

(
r (k−1)

i

)
for all i it follows that

N∑

i=1

η
(

r (k−1)
i , r (k−1)

i

)
= fk−1.
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If all weights wi are zero we have reached a local maximum and we will not find
any better solution using the IRLS-ICP algorithm, given in Algorithm 1. Then we
are terminating the iterations and the current transformation is returned. If any of the
weights wi are greater than zero then the update (R∗, t∗) of the rigid body transfor-
mation, obtained from (4), is applied to p(k−1)

i giving the update of the data points,

p(k)i = R∗p(k−1)
i + t∗ and new residuals s(k)i = ‖p(k)i − y(k−1)

i ‖2 are computed. From
this update we define

ek =
N∑

i=1

�
(

s(k)i

)
.

The rigid body transformation (R∗, t∗) gives the least value of the function g in (5)
resulting in

N∑

i=1

η
(

s(k)i , r (k−1)
i

)
≤

N∑

i=1

η
(

r (k−1)
i , r (k−1)

i

)
.

Accordion to Lemma 1 we have η
(

s(k)i , r (k−1)
i

)
≥ �

(
s(k)i

)
for all i yielding

ek ≤
N∑

i=1

η
(

s(k)i , r (k−1)
i

)
,

which gives that ek ≤ fk−1 .

In the next iteration closest model points y(k)i = C
(

p(k)i , X
)

, residuals r (k)i =
‖p(k)i − y(k)i ‖2 , and new weights, wi = w(r (k)i ) are computed. The value fk of the
objective function f for these residuals is

fk =
N∑

i=1

�
(

r (k)i

)
.

The points y(k)i are the closest model points to p(k)i so it is clear that

‖p(k)i − y(k)i ‖2 ≤ ‖p(k)i − y(k−1)
i ‖2 ,

i.e. r (k)i ≤ s(k)i , holds for all i . Since � is a monotonically increasing function for

positive residuals we have fk ≤ ek . The equality is satisfied if and only if y(k)i = y(k−1)
i

for all i .
To summarize we can conclude that

0 ≤ fk ≤ ek ≤ fk−1,
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is fulfilled. The lower bound is zero since a sum of non-negative values cannot be
negative. It gives that the sequences of fk and ek are monotonically decreasing and
bounded below. Then they will converge to a real value, which is the same for both
sequences. There are just two possibilities for the updating transformation that do not
change the values of fk and ek to their updates in the subsequent iteration. Either the
updating transformation is equal to the identity transformation, (R∗, t∗) = (I, 0), and
that occurs when the function g has a unique minimum. For this transformation all
the residuals are preserved so that si = ri for all i and hence, all the terms of ∇g are
unchanged. The other possibility for the updating transformation is that it rotates the
data points around a line or a point and that occurs when the function g does not have
a unique minimum. For this transformation all the residuals associated with positive
weights are preserved. The residuals corresponding to weights that are equal to zero
can however change but that does not affect ∇g, since the terms of ∇g corresponding
to zero valued weights are zero anyway. Since g is minimized and all terms of ∇ f and
1
2∇g are equal we have that the gradients of f and g satisfy ∇ f = 1

2∇g = 0. There-
fore, the optimality condition given by (11) is fulfilled. Suppose that the sequence of
fk will converge to a value that is larger than the value of the objective function f at the
local extremum. Then this would contradict the operation of the closest point operator
C. We can do the conclusion that the IRLS-ICP algorithm converges monotonically to
a local extremum with respect to the value of the objective function f in (2). 
�

From Theorem 1 we know that the IRLS-ICP algorithm converges to a local
extremum for all criterion functions � in Q. There is a possibility that the IRLS-
ICP algorithm will return a transformation (R, t)which gives a maximum of f . It can
happen if the used criterion function � has a constant value for inputs of large magni-
tude and all initial residuals ‖p(0)i − y(0)i ‖2 are of significant size. Then the value of ψ
is zero for these residuals so that all weights wi are equal to zero. It results in that the
function g is a constant equal to zero, so there is nothing to minimize in (4). Thus, the
IRLS-ICP algorithm do not have any possibility to find a transformation that gives a
better fit between the point sets in such cases. The value of the criterion function � can
not be greater than its value at these residuals and therefore, the objective function f
attains a maximum. It can also happen, but it is extremely unlikely, that the IRLS-ICP
algorithm will end up in a local maximum or a saddle point after some iterations. We
can not exclude that possibility, but it will only happen in some very rare cases. In
general, we can expect that the IRLS-ICP algorithm will reach a local minimum. If
for example the initial orientation of the data points is turned the wrong way, being
upside-down, or having some other apparent misalignment in comparison with the
model points we will probably not obtain the global minimum. The same thing can
also happen if the shape of the model points has many similar features. However, if
the initial rigid body transformation, (R(0), t(0)), is carefully chosen we can expect
that the reached local extremum is the global minimum.

4 Scaling

So far we have just been discussing criterion functions as they originally are defined.
Let say that we have a positive scale parameter, σ∗ > 0, and define a criterion function
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Algorithm 2 The IRLS-ICP algorithm, Algorithm 1, using re-scaled residuals
Require: . . . , σ0 > σ∗

repeat
· · ·
wi =w(‖p(k−1)

i − y(k−1)
i ‖2/σk−1)· · ·

Update σk−1 to σk
until convergence

using � as

�̃(r) = �

(
r

σ∗

)
.

If the function � is in the set Q then the function �̃ is also in the set Q. Therefore, the
problem

min
R,t

f̃ (R, t) , (13)

where

f̃ (R, t) =
N∑

i=1

�

(
d(Rpi + t, X)

σ∗

)
, (14)

can be solved using the IRLS-ICP algorithm with the weight function w̃(r) = w(r/σ∗)
and convergence is ensured according to Theorem 1.

If the value of σ∗ is small and ψ is close or equal to zero for large residuals the
criterion function �̃ will have a narrow descend at zero. It might result in a slow
convergence or convergence to a local extremum far from the global minimum. A way
to reduce this problem is to use a quite large value of σ , greater than σ∗, in the first
iterations and then gradually decrease its value to the desired value σ∗. An extended
version of the IRLS-ICP algorithm is given in Algorithm 2, where a scaling is used
and is updated in the iterations. In Algorithm 2 most of the steps are the same as in
Algorithm 1 and therefore they are removed to make it shorter.

Lemma 2 Assume that σ0 > σ1 > 0. For all criterion functions � ∈ Q and residuals
r ∈ R we have

�

(
r

σ0

)
≤ �

(
r

σ1

)
≤ σ 2

0

σ 2
1

�

(
r

σ0

)
.

Proof It is obvious that the two inequalities in the lemma hold with equality if r = 0
since �(0) = 0. Now let r be positive. Then we have 0 < r/σ0 < r/σ1 resulting in
� (r/σ0) ≤ � (r/σ1), which follows from the second condition in the definition of Q.
Thus, the first inequality in the lemma holds for positive r . We introduce a function

123



Iteratively reweighted least squares

δ(r) = σ 2
0

σ 2
1

�

(
r

σ0

)
− �

(
r

σ1

)
,

and we have δ(0) = 0. The derivative of δ, δ ′, can be written as

δ′(r) = r

σ 2
1

(
w

(
r

σ0

)
− w

(
r

σ1

))
.

The weight function w is monotonically decreasing on [0,∞) and 0 < r/σ0 < r/σ1
sow(r/σ0)−w(r/σ1) ≥ 0. The factor r/σ 2

1 is positive and therefore, the derivative δ′
on (0,∞) is non-negative and thus, δ is monotonically increasing on [0,∞). Hence,
δ ≥ 0 on [0,∞) and we have proved that the second inequality in the lemma holds
for all r ≥ 0. Since the function � is even it follows that the inequality relation in the
lemma holds for all r ∈ R. 
�
Theorem 2 Consider the IRLS-ICP algorithm presented in Algorithm 2, where a
scaling σk ≥ σ∗ > 0 is used that is updated in the iterations k = 1, 2, . . . , and
let � ∈ Q. The values f̃k of the objective function f̃ in (14) from each iteration of
Algorithm 2 satisfy

N∑

i=1

�

(
ri

σk

)
≤ f̃k ≤ σ 2

k

σ 2∗

N∑

i=1

�

(
ri

σk

)
.

If the sequence of σk is monotonically decreasing then the upper limit of the above
inequality relation is also monotonically decreasing. The IRLS-ICP algorithm con-
verges to a local extremum of f̃ if the sequence of σk approaches to σ∗.

Proof It is given that σk ≥ σ∗. According to Lemma 2 each of the N terms in the
given sums, and the sum of f̃ , satisfy the inequalities. Hence the same must also hold
for the sums. Now assume that the sequence of σk is monotonically decreasing, i.e.
σ∗ ≤ σk ≤ σk−1. From Lemma 2 and Theorem 1 we can deduce,

σ 2
k
σ 2∗

N∑
i=1

�

(
r (k)i
σk

)
≤ σ 2

k
σ 2∗

σ 2
k−1

σ 2
k

N∑
i=1

�

(
r (k)i
σk−1

)
=

σ 2
k−1
σ 2∗

N∑
i=1

�

(
r (k)i
σk−1

)
≤ σ 2

k−1
σ 2∗

N∑
i=1

�

(
r (k−1)

i
σk−1

)
.

Therefore, the upper bound in the inequality relation given in the theorem is monoton-
ically decreasing if the sequence of σk is monotonically decreasing. The function � is
continuous which is stated in the first condition in the definition of Q resulting in

σk → σ∗ ⇒ � (r/σk) → � (r/σ∗) .

Hence, the sequence of
∑N

i=1 � (ri/σk) over the iterations k = 1, 2, . . . converges
to the objective function f̃ and

∑N
i=1 � (ri/σk) converges to a local extremum as
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a consequence of Theorem 1 since �k(r) = � (r/σk) ∈ Q. Thus, the IRLS-ICP
algorithm, Algorithm 2, converges to a local extremum of f̃ if the sequence of σk

approaches to σ∗. 
�
The scaling parameter σ∗ in (14) should not be chosen to be smaller than the

expected standard deviation of the error of the “good” data, which is the data that
represents what it is supposed to represent pretty well. After a scaling using an appro-
priate value of σk , the residuals of the “good” data that are entered into the criterion
function can be assumed to have approximate the same deviations in each iteration k.
We want to get good solutions if the data is free of outliers and normally distributed.
To achieve this, the parameters κ of the used criterion functions are chosen in such a
way that the asymptotic variance

V (ψ, F) =
∫
ψ2d F

( ∫
ψ ′d F

)2 ,

(see e.g. [7,10,13]) is close to 1, given an assumption of normal distribution N (0, 1)
for the errors. The asymptotic variance V (ψ, F) is always greater than 1 for robust
criterion functions. By choosing it to be 1.01, we get the following values of the
parameters:

κHu = 2.0138,
κCa = 4.3040,
κTu = 7.0589.

(15)

In the first iterations of the IRLS-ICP algorithm the scaling σk should be chosen
so that the algorithm gives fast convergence to a minimum and not get stuck at a
maximum outside the region of convergence. During the iterations the value of σk

should approach to σ∗ from above. A way of choosing this scaling is to let

σk =
{

1.90 median
({ri }N

i=1

)
if k = 0,

ξ(σk−1 − σ∗)+ σ∗ if k > 0,
(16)

where ξ is a parameter satisfying 0 ≤ ξ < 1. The value of ξ should be chosen
so it match the expected rate of convergence. If the residuals {ri }N

i=1 are positive
observations from a normal distribution N (0, 1), then approximately 80 % of the
residuals will be less than σ0 in the first iteration. Using the median in the estimation
of σ0 provides less vulnerability to outliers than if the scaling were based on the actual
upper residuals. We can also be sure that not all weights wi are equal to zero in the
first iteration, so that the IRLS-ICP algorithm will start in a region of convergence.
Since the median is used only in the first iteration time for computing it is negligible.

5 Numerical comparisons

Here we conduct numerical experiments in order to test the performance of the IRLS-
ICP algorithm, presented in Algorithm 2, when solving surface registration problems
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given by (13), where X is a set of surface points and most of the data points pi represent
the shape of the surface. The set of data points is also containing some errors so the
capability of the robust criterion functions can be examined. A least squares solution,
i.e. where we have �(r) = r2/2, is also computed for comparison.

Six different smooth surfaces are used in the experiment, which are shown in Fig. 2.
The first four surfaces might seem to have sharp edges and corners but they are actually
rounded. The last two surfaces are kinematic surfaces [19] which are invariant under
some rigid body transformations so no unique solution of (13) does exists for these
surfaces. From each of these six surfaces we have sampled 100000 points. A local
quadratic surface approximation is acquired at each of these points to represent the
surface as the set of model points X . We are also sampling a set of Ng = 1000

(“good”) non disturbed data points {pi }Ng
i=1, and Nb = 500 (“bad”) disturbed data

points {pi }Ng+Nb
i=Ng+1 from the surfaces, and all these N = Ng + Nb data points are

transformed by a rigid body transformation. The disturbed data points are generated
randomly from a normal distribution in the 3D-space. The problem is then to estimate
a rigid body transformation for fitting the set of data points {pi }N

i=1 to the set of points
X by solving (13). The sets of data points are also shown in Fig. 2.

The search for the closest point in X to an arbitrary data point, written as the operator
C in Algorithm 1, is done by first finding the closest point among all the 100000 sampled
surface points in X . The corresponding local quadratic surface approximation is then
used to find an even better approximation of the closest point on the surface.

The aim of the experiment is to test the performance of the criterion functions and
make a comparison of them. Hence, we need a comparable measure of efficiency. In
iteration k we are using


k = 1

Ng

Ng∑

i=1

r2
i , (17)

as a measure of efficiency, which is the mean squared residual between the non-
disturbed data points and the surface. We have that 
k ≥ 0 and 
k should eventually
approach to a value close to zero. It is not exactly zero since the search for the clos-
est surface point is just approximate by the usage of the 100000 sampled surface
points and the corresponding local quadratic surface approximation. The values of
the parameters κ of the robust criterion functions given in (15) are used making the
criterion functions comparative. The scaling parameter σk defined in (16) is used to
scale the residuals. It is still arbitrary, but by some thought we let σ∗ = a/1000, where
a = √

�x2 +�y2 +�z2 is the diagonal of the distribution of the surface points in
x, y, z-directions. The value of the parameter ξ for surface 3 and 4 is set to 0.95 and
for the other surfaces the value of ξ is set to 0.85. The result from our experiment is
shown in Fig. 3.

From Fig. 3 it is clear that the least square solution is inferior to the others. The
large residuals of the “bad” data influence the surface registration to such an extent
that is simply fails. The robust methods on the other hand, manage to find much better
solutions, measured by 
k from (17). Tukey’s bi-weight function seems to give the best
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Fig. 2 Surfaces and data points, a rounded tetrahedron, b rounded cube, c rounded cuboid, d rounded
cuboid, e torus, f sphere

results in this tests. Second best is Cauchy’s function, then comes Huber’s function,
and finally the quadratic function. From Fig. 1 we can see that this order coincides
with their ability to reduce strong influence of the outliers.

We can also observe from Fig. 3 that in the registration using surface 3 and 4, the
two rounded cuboids, we have a very slow convergence compared to the other surfaces.
Surface 3 is very drawn-out in one direction which gives a slow convergence in that
direction. Surface 4 is much flattened; almost like a plane, having the same difficulties
of convergence as points on a plane. The other surfaces have more distinct shapes
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 Observed values of 
k in iteration k given by (17) for the a rounded tetrahedron, b rounded cube,
c rounded cuboid, d rounded cuboid, e torus, f sphere

giving faster convergence. We do not have any unique solution of (13) for the last two
surfaces, the kinematic surfaces, since these surfaces are invariant under some rigid
body transformation. However, in comparison we get quite fast convergence of 
k for
these two surfaces.

6 Discussion

The non-convex criterion functions are the clear winners in our experiments. However,
in traditional regression problems, those criterion functions are known to introduce
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local minima, causing all kinds of troubles. None of that could be seen in our experi-
ments here, but it would be advisable to be cautious. A remedy to this problem could
be to start by using Huber’s criterion function for some iterations and then change to
a more robust criterion function.

The sequence of scaling parameters σk , defined in (16), is exponentially decreasing
to σ∗. The values of σ might be chosen in many different ways but exponential decreas-
ing seems to be a good choice from observations of non-published experiments. In
our experiment we have set the exponential base ξ to 0.85 and 0.95 dependent of the
shape of the surfaces which seems to be appropriate values. If the value of σ∗ is not
known at all some method of estimating it is necessary to be added to the algorithm.
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