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Abstract—This article presents our initial results in deep the improving computational resources on devices and the
learning for channel estimation and signal detection in orthogonal - availability of data in large quantity, we expect deep learning
frequency-division multiplexing (OFDM) systems. In this article, to find more applications in communication systems.

we exploit deep learning to handle wireless OFDM channels in L
an end-to-end manner. Different from existing OFDM receivers ~ ANNS have been demonstrated for channel equalization

that first estimate channel state information (CSI) explicitly and ~ with online training, which is to adjust the parameters accord-

then detect/recover the transmitted symbols using the estimated ing to the online pilot data. However, such methods can not be
CSl, the proposed deep learning based approach estimates CSlgpplied directly since, with deep neural networks (DNNSs), the

implicitly and recovers the transmitted symbols directly. To number of parameters increased a lot, which requires a large
address channel distortion, a deep learning model is first trained . o

offline using the data generated from simulation based on channel NUMber of training data together with the burden of a long

statistics and then used for recovering the online transmitted data training period. To address the issue, we train a DNN model

directly. From our simulation results, the deep learning based ap- that predicts the transmitted data in diverse channel conditions.

proach can address channel distortion and detect the transmitted Then the model is used in online deployment to recover the
symbols with performance comparable to the minimum mean- transmitted data

square error (MMSE) estimator. Furthermore, the deep learning . . L . .
based approach is more robust than conventional methods when ~ This article presents our initial results in deep learning for
fewer training pilots are used, the cyclic prefix (CP) is omitted, channel estimation and symbol detection in an end-to-end

and nonlinear clipping noise exists. In summary, deep learning manner. It demonstrates that DNNs have the ability to learn
is a promising tool for channel estimation and signal detection anq analyze the characteristics of wireless channels that may

gnévnirr?tlgffzrgﬁ?emumcatuons with complicated channel distortion suffer from nonlinear distortion and interference in addition

to frequency selectivity. To the best of our knowledge, this

is the first attempt to use learning methods to deal with

|. INTRODUCTION wireless channels without online training. The simulation

L . . . results show that deep learning models achieve performance
Orthogonal frequency-division multiplexing (OFDM) is a " W P g 1eve p

| dulati h that has b delv ad c%mparable to traditional methods if there are enough pilots
popular moduiation scheme that has been widely a Opﬁ?\ OFDM systems, and it can work better with limited pilots,
in wireless broadband systems to combat frequency-selec

fading in wireless channels. Channel state information (CSr 5 removal, and nonlinear noise. Our initial research results
e C o dicate that deep learning can be potentially applied in man
is vital to coherent detection and decoding in OFDM syste P J P Y app y

Mirections in signal processing and communications.
Usually, the CSI can be estimated by means of pilots prior to gnatp g

the detection of the transmitted data. With the estimated CSI,

transmitted symbols can be recovered at the receiver. I[I. DEEPLEARNING BASED ESTIMATION AND DETECTION
Historically, channel estimation in OFDM systems has been _

thoroughly studied. The traditional estimation methods, i.¢% Deep Learning Methods

least squares (LS) and minimum mean-square error (MMSE) peep learning has been successfully applied in a wide range
have been utilized and optimized in various conditions [2]. Th& areas with significant performance improvement, including
method of LS estimation requires no prior channel statistic&amputer vision [6], natural language processing [7], speech
but its performance may be inadequate. The MMSE estimatigitognition [8], and so on. A comprehensive introduction to
in general leads to much better detection performance B¥ep learning and machine learning can be found in [1].
utilizing the second order statistics of channels. The structure of a DNN model is shown in Fig. 1. Generally
In this article, we introduce a deep learning approach teaking, DNNs are deeper versions of ANNs by increasing
channel estimation and symbol detection in an OFDM systefie number of hidden layers in order to improve the ability
Deep learning and artificial neural networks (ANNS) hav@ representation or recognition. Each layer of the network
numerous applications. In particular, it has been successfullynsists of multiple neurons, each of which has an output that
applied in localization based on CSI [3], channel equalizatiqg 5 nonlinear function of a weighted sum of neurons of its
[5], and channel decoding [4] in communication systems. Wityeceding layer, as shown in Fig. 1. The nonlinear function

_ , may be the Sigmoid function, or the Relu function, defined
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where ® denotes the circular convolution while(n) and
" : zm:fu-l)@gsﬁl-nug-z)) Output Layer w(n) represent the transmitted signal and the additive white
D ' Gaussian noise (AWGN), respectively. After removing the CP
‘ ‘ . and performing DFT, the received frequency domain signal is

Y (k) = X (k)H (k) + W (F), ®3)

o & © u(:):’(u)(ze(*z‘)“?)) [ Hddentayer where Y (k), X (k), H(k), and W (k) are the DFT ofy(n),
e — z(n), h(n) andw(n), respectively.
. ‘ . . u?>=fm(zgg;>,,> We assume that the pilot symbols are in the first OFDM
G ’ block while the following OFDM blocks consist of the trans-
0”' . . S mitted data. Together they form faame. The channel can
be treated as constant spanning over the pilot block and the
f f f data blocks, but change from one frame to another. The DNN
model takes as input the received data consisting of one pilot
Fig. 1. An example of deep learning models. block and one data block in our initial study, and recovers the
transmitted data in an end-to-end manner.
As shown in Fig. 2, to obtain an effective DNN model for
transformation of input dath, mathematically expressed as joint channel estimation and symbol detection, two stages are
L—1), p(L—2 1 included. In the offline training stage, the model is trained with
2= f(L,6) = fET(FETI( - f M), @) the received OFDM samplesg tha? are generated with various
where L stands for the number of layers afiddenotes the information sequences and under diverse channel conditions
weights of the neural network. The parameters of the modgith certain statistical properties, such as typical urban or hilly
are the weights for the neurons, which need to be optimiztatrain delay profile. In the online deployment stage, the DNN
before the online deployment. The optimal weights are usuafiyodel generates the output that recovers the transmitted data

learned on a training set, with known desired outputs. without explicitly estimating the wireless channel.
B. System Architecture C. Model Training
The models are trained by viewing OFDM modulation and
O the wireless channels as black boxes. Historically, researchers

real channels in terms of channel statistics. With these channel
models, the training data can be obtained by simulation. In
each simulation, a random data sequence is first generated as
the transmitted symbols and the corresponding OFDM frame is
formed with a sequence of pilot symbols and the pilot symbols

* Transmitter k {* Channel
ﬁf)" b B o have developed many channel models that well describe the

Online deployment

e Offine training need to be fixed during the training and deployment stages.
» 06~ ® The current random channel is simulated based on the channel
eo0e- o models. The received OFDM signal is obtained based on
0069 the OFDM frames undergoing the current channel distortion,
including the channel noise. The received signal and the
Fig. 2. System model. original transmitted data are collected as the training data. The

) ) _input of deep learning model is the received data of the pilot
The architecture of the OFDM system with deep learningock and one data block. The model is trained to minimize

based channel estimation and signal detection is illustratgg yifference between the output of the neural network and

in Fig. 2. The baseband OFDM system is the same as @ transmitted data. The difference can be portrayed in several
conventional ones. On the transmitter side, the transmittggd, s

symbols inserted with pilots are first converted to a paralleled 6ur experiment settings, we choose the loss,

data stream, then the inverse discrete Fourier transform (IDFT)

is used to convert the signal from the frequency domain to the Loy = i Z(X(k) _ X(k:))z, (4)
time domain. After that, a cyclic prefix (CP) is inserted to N &

mitigate the inter-symbol interference (ISI). The length of the

CP should be no shorter than the maximum delay spread L . . N
the channel. message, which is the transmitted symbols in this situation.

We consider a sample-spaced multi-path channel describ Jhe DNN mode| we use consists of five layers, three of

: - : : h are hidden layers. The numbers of neurons in each
by complex random Varlablqu(n)}ﬁ[:ol. The received signal \* '© . .
can be expressed as layers are256, 500, 250, 120, 16, respectively. The input

number corresponds to the number of real parts and imaginary
y(n) = z(n) ® h(n) + w(n), (2) parts of2 OFDM blocks that contain the pilots and transmitted

ere X (k) is the prediction andX (k) is the supervision
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Fig. 3. BER curves of deep learning based approach and tnaglitmethods. Fig. 4. BER curves without CP.

symbols. Everyl6 bits of the transmitted data are groupedata. The input and output of DNN remain unchanged. From
and predicted based on a single model trained independerfig. 3, when only8 pilots are used, the BER curves of the
which is then concatenated for the final output. The RellS and MMSE methods saturate when SNR is abbtvealB
function is used as the activation function in most layers excephile the deep learning based method still has the ability to
in the last layer where the Sigmoid function is applied to magduce its BER with increasing SNR, which demonstrates that

the output to the interveD, 1. the DNN is robust to the number of pilots used for channel
estimation. The reason for the superior performance of the
1. SIMULATION RESULTS DNN is that the characteristics of the wireless channels can be

We have conducted several experiments to demonstrate I{%aerned based on the training data generated from the model.

performance of the deep learning methods for joint channel
estimation and symbol detection in OFDM wireless communB. Impact of CP

cation systems. A DNN model is trained based on simulation ag jndicated before, the CP is necessary to convert the linear
data, and is compared with the traditional methods in tergynyolution of the physical channel into circular convolution
of bit-error rates (BERs) under different signal-to-noise ratiog,q mitigate ISI. But it costs time and energy for transmission.
(SNRs). In the following experiments, the deep learing basgf ihis experiment, we investigate the performance with CP
approach is proved to be more robust than LS and MMS§Eoval.

under scenarios where fewer training pilots are used, therjg 4 jllustrates the BER curves for an OFDM system with-
CP is omitted, or there is nonlinear clipping noise. In o0u§,; cp. From the figure, neither MMSE nor LS can effectively
experiments, an OFDM system withi sub-carriers and the ggtimate channel. The accuracy tends to be saturated when
CP of length16 is considered. The wireless channel followgnR is overis dB. However. the deep learning method still
the wireless world initiative for new radio model (WINNER,\ s well. This result shows again that the characteristics of

Il) [9], where the carrier frequency &6 GHz, the number of i yyireless channel have been revealed and can be learned in
paths is24, and typical urban channels with maximum delay,o training stage by the DNNSs.

16 sampling period are used. QPSK is used as the modulation
method. o o ) .
C. Impact of Clipping and Filtering Distortion
As indicated in [10], a notable drawback of OFDM is the
high peak-to-average power ratio (PAPR). To reduce PAPR,

L . e clipping and filtering approach serves as a simple and
MMSE methods for channel estimation and detection, wh(=e ective approach [10]. However, after clipping, nonlinear

64 pilots are used for channel estimation in each fram(_a. Frol%ise is introduced that degrade the estimation and detection
Fig. 3, the LS method has the worst performance since §8rformance The clipped signal becomes
prior statistics of the channel has been utilized in the detection. '

On the contrary, the MMSE method has the best performance (n) {x(n% if |x(n)] < A,
n)=

A. Impact of Pilot Numbers
The proposed method is first compared with the LS a

(®)

because the second-order statistics of the channels are assumed z Apid(n) otherwise

to be known and used for symbol detection. The deep learning ’

based approach has much better performance than the vi8re A is the threshold ané(n) is the phase ok(n).

method and is comparable to the MMSE method. Fig. 5 depicts the detection performance of the MMSE
Since the channel model has a maximum delayl6f method and deep learning method when the OFDM system

sampling period, it can be estimated with much fewer pilotss contaminated with clipping noise. From the figure, when

leading to better spectrum utilization. When olyilots are clipping ratio (CR =A /o, whereo is the root mean square of

used, the first OFDM block consists ®pilots and transmitted signal) is1, the deep learning method is better than the MMSE

2162-2337 (¢) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LWC.2017.2757490, IEEE Wireless
Communications Letters

4
10° 100
-:©- Deep Learning with Ideal Condition -©- Max Delay = 16, Path Number = 24 (trained)
—6— Deep Learning Clipped CR = 1 —6— Max Delay = 16, Path Number = 12
-+%+ MMSE with Ideal Condition —©— Max Delay = 16, Path Number = 36
—#«— MMSE Clipped CR = 1 —k— Max Delay = 22, Path Number = 24
10714 101 4
é 1072 é 1072 4
1072 4 1073 4
107 T T T T T 1074 r T T T u
0 5 10 15 20 25 30 0 5 10 15 20 25 30
SNR (dB) SNR (dB)
Fig. 5. BER curves with clipping noise Fig. 7. BER curves with mismatches between training and deploy-
ment stages.
10° z z
O e e with A o " in an OFDM system. The model is trained offline based
T4 MMSE with All Effects on the simulated data that view OFDM and the wireless

101 4

channels as black boxes. The simulation results show that the
deep learning method has advantages when wireless channels

& 1024 are complicated by serious distortion and interference, which
T proves that DNNs have the ability to remember and analyze the
o] Ty complicated characteristics of the wireless channels. For real-

world applications, it is important for the DNN model to have

a good generalization ability so that it can still work effectively

T " " " = - when the conditions of online deployment do not exactly agree
SR (08) with the channel models used in the training stage. An initial

experiment has been conducted in this article to illustrate the

generalization ability of DNN model with respect to some

parameters of the channel model. More rigorous analysis and

method when SNR is over5 dB, proving that deep learning more comprehensive experiments are left for the future work.

method is more robust to the nonlinear clipping noise. In addition, for practical use, samples generated from the real
Fig. 6 compares DNN with the MMSE method when alwireless channels could be collected to retrain or fine-tune the

above adversities are combined together, i.e., 8rpjlots are model for better performance.

used, the CP is omitted, and there is clipping noise. From the

figure, DNN is much better than the MMSE method but has a REFERENCES
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