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This paper introduces a bio-inspired metaheuristic optimization algorithm named Tunicate Swarm Algorithm
(TSA). The proposed algorithm imitates jet propulsion and swarm behaviors of tunicates during the navigation
and foraging process. The performance of TSA is evaluated on seventy-four benchmark test problems employing
sensitivity, convergence and scalability analysis along with ANOVA test. The efficacy of this algorithm is further
compared with several well-regarded metaheuristic approaches based on the generated optimal solutions. In

addition, we also executed the proposed algorithm on six constrained and one unconstrained engineering
design problems to further verify its robustness. The simulation results demonstrate that TSA generates better
optimal solutions in comparison to other competitive algorithms and is capable of solving real case studies

having unknown search spaces.

Note that the source codes of the proposed TSA algorithm are available at http://dhimangaurav.com/

1. Introduction

To minimize or maximize a function in terms of decision variables,
optimization approach plays a significant role. Many real-life problems
have a large number of solution spaces, which consists of non-linear
constraints. Such problems also have high computational cost along
with non-convex and complicated in nature (Singh and Dhiman, 2018a;
Dhiman and Kumar, 2018c; Singh and Dhiman, 2018b; Dhiman and
Kaur, 2018; Singh et al., 2018b; Dhiman and Kumar, 2018a; Kaur et al.,
2018; Singh et al., 2018a). Hence, for solving such problems in terms of
large number of variables and constraints are very complicated tasks.
Further, local optimum solutions as obtained from various classical
approaches do not guarantee for the best solution. To resolve these
issues, numerous metaheuristic optimization algorithms are proposed
by the researchers (Dhiman et al., 2018; Dhiman and Kumar, 2019b;
Dhiman and Kaur, 2019b; Dhiman and Kumar, 2019a; Dhiman et al.,
2019; Dhiman, 2019c), which are found to be very efficient for solving
very complex problems. However, researchers have given more empha-
size in developing of metaheuristic algorithms that are computationally
inexpensive, flexible, and simple by nature.

In literature, two broad categories of metaheuristics algorithms are
discussed, as single solution based algorithm (SSBA) and population based
algorithm (PBA) (Dhiman and Kumar, 2017). In SSBA, a solution is ran-
domly generated and improved until the optimal solution is obtained;

whereas in case of PBA, solutions are randomly evolved in a given
search space and try to improve until the optimal solution is obtained.
However, most of the SSBAs are unable to reach at the level of global
optimum solution due the reason of generating random solution. On
the other hand, PBAs are able to find the global optimum. Due to this
reason, researchers have attracted towards the PBAs nowadays (Singh
et al., 2019; Dhiman, 2019a,b; Dehghani et al., 2019; Chandrawat et al.,
2017; Singh and Dhiman, 2017; Dhiman and Kaur, 2017; Verma et al.,
2018; Kaur and Dhiman, 2019; Dhiman and Kaur, 2019a; Dhiman and
Kumar, 2019c; Garg and Dhiman, 2020).

Further PBAs are categorized, based on the theory of evolutionary
algorithms (EAs), as logical behavior of physics algorithms, swarm
intelligence of particles, and biological behavior of bio-inspired algo-
rithms. Various EAs are motivated by natural processes, which include
reproduction, mutation, recombination, and selection. The survival
fitness of candidate in a population (i.e., a set of solutions) is the
main basis of all these EAs. Algorithms that are based on the law of
physics include the various rules of physics, such as electromagnetic
force, gravitational force, heating and cooling of materials, and force
of inertia. Algorithms that are biologically inspired mostly mimics
the intelligence of swarms. Such kind of intelligence can be adopted
among colonies of flocks, ants, and so on. Swarm intelligence based
algorithms are very popular among the researchers due to its ease
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Fig. 1. Swarm behavior of tunicate in deep ocean.

of implementation. Its also requires very less number of parameters
to be adjusted. Among this category of algorithms, Particle Swarm
Optimization (PSO) (Kennedy and Eberhart, 1995) and Ant Colony
Optimization (ACO) (Dorigo et al., 2006) are very well-known tech-
niques for the global optimization problems. These kind of algorithms
generally mimics the social behavior of fish schooling or bird flocking,
where it is assumed that each particle moves around the search space
and continuous update its current position w.r.t. the global position
until satisfactory solution is found.

Optimization algorithms always requires to focus on exploration
and exploitation of a search space (Alba and Dorronsoro, 2005) by
maintaining good balancing between them. The exploration process in
an algorithm investigates the various promising regions in a search
space; whereas exploitation process searches the best solutions over
the promising regions (Lozano and Garcia-Martinez, 2010). Hence,
to achieve the optimal solutions or near to optimal solutions, these
two processes are required to be tuned enough. Having availability
of large number of such optimization algorithms, there is always a
question raise for the requirement of development of more optimization
algorithms. Its answer lies in No Free Lunch (NFL) theorem (Wolpert and
Macready, 1997), which suggests that a specific optimization algorithm
does not solve every problem, because every problem has its own
complexity and nature. The NFL theorem inspires the researchers to
design some new optimization algorithms, which can solve various
domain of specific problems.

In this study, authors introduce a novel bio-inspired metaheuristic
algorithm, named as Tunicate Swarm Algorithm (TSA), is proposed for
optimizing non-linear constrained problems. It is inspired by the swarm
behavior of tunicate to survive successfully in the depth of ocean. The
main contributions of this work are as follows:

+ A bio-inspired tunicate swarm algorithm (TSA) is proposed. The
jet propulsion and swarm behaviors of tunicates are examined and
mathematically modeled.

+ The proposed TSA is implemented and tested on 74 benchmark
test functions (i.e., classical, CEC-2015, and CEC-2017).

+ The performance of the proposed TSA algorithm is compared with
state-of-the-art metaheuristics.

» The efficiency of TSA algorithm is examined for solving the
engineering design problems.

The rest of this paper is organized as follows: Section 2 presents
the main inspiration and justification of the proposed algorithm. The
proposed TSA algorithm is described in Section 3. The experimentation
and simulations are presented in Section 4. Section 5 describes the
applications of TSA on real-life engineering problems. Finally, the
conclusion and future work is given in Section 6.

2. Inspiration

Tunicates are bright bio-luminescent, producing a pale blue—green
light that can be seen more than many metres away. Tunicates are
cylindrical-shaped which are open at one end and closed at the other
(Berrill, 1950). Each tunicate is a few millimeters in size. There is a
common gelatinous tunic in each tunicate which is helpful to join all
of the individuals. However, each tunicate individually draws water
from the surrounding sea and producing jet propulsion by its open end
through atrial siphons. Tunicate is only animal to move around the
ocean with such fluid jet like propulsion. This propulsion is powerful to
migrate the tunicates vertically in ocean. Tunicates are often found at
depth of 500-800 m and migrate upwards in the upper layer of surface
water at night. The size of a tunicate varies from a few centimeter to
more than 4 m (Davenport and Balazs, 1991). The most interesting fact
of tunicate is their jet propulsion and swarm behaviors (see Fig. 1),
which is the main motivation behind this paper.

2.1. Motivation

From past few decades, nature-inspired algorithms have gained
significant attention from both industry as well as academia. Con-
sequently, numerous algorithms have been provided by researchers
after taking inspiration from the nature. In the catalogue of proposed
nature-inspired approaches, a majority of algorithms are biology or
bio-inspired as they are based on the notion of some characteristics
of biological system. Among bio-inspired algorithms, a special class of
algorithms have been developed by drawing inspiration from swarm
intelligence. Population or Multiple-solution based swarm intelligence
algorithms exhibit capability towards solving many real-world opti-
mization problems due to their ability of thoroughly exploring the
search space and returning the global optima. However, these ap-
proaches cannot solve all optimization problems as also stated by No
Free Lunch theorem (Wolpert and Macready, 1997). This fact has mo-
tivated us to propose a new population based metaheuristic algorithm
with the hope to solve several problems which are hard to solve with
existing optimization techniques.

3. Tunicate swarm algorithm (TSA)

In this section, the inspiration and mathematical modeling of the
proposed algorithm are described in detail.
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Fig. 2. Conflict avoidance between search agents.

3.1. Mathematical model and optimization algorithm

Tunicate has an ability to find the location of food source in sea.
However, there is no idea about the food source in the given search
space. In this paper, two behaviors of tunicate are employed for finding
the food source, i.e., optimum. These behaviors are jet propulsion and
swarm intelligence.

To mathematically model the jet propulsion behavior, a tunicate
should satisfied three conditions namely avoid the conflicts between
search agents, movement towards the position of best search agent, and
remains close to the best search agent. Whereas, the swarm behavior
will update the positions of other search agents about the best optimal
solution. The mathematical modeling of these behaviors is described in
the preceding subsections.

3.1.1. Avoiding the conflicts among search agents

To avoid the conflicts between search agents (i.e., other tunicates),
vector A is employed for the calculation of new search agent position
as shown in Fig. 2.

i-< m
M

G=cy+c;—F ()

F=2.¢ 3)

However, G is the gravity force and F shows the water flow advection
in deep ocean. The variables c,,¢,, and ¢; are random numbers lie in
the range of [0, 1]. M represents the social forces between search agents.
The vector M is calculated as follows:

le min+CI'Pmax_PminJ 4
where P,;, and P,,. represent the initial and subordinate speeds to
make social interaction. In this work, the values of P, and P, are
considered as 1 and 4, respectively. Note that the detailed sensitivity
analysis of these parameters is discussed in Section 5.5.

3.1.2. Movement towards the direction of best neighbour
After avoiding the conflict between neighbors, the search agents are
move towards the direction of best neighbour (see Fig. 3).

PD =| FS ~r4q - Py(x) | (5)

where PD is the distance between the food source and search agent,
i.e., tunicate, x indicates the current iteration, F.S is the position of food
source, i.e., optimum. Vector P;(x) indicates the position of tunicate
and r,,,; is a random number in range [0, 1].
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Fig. 3. Movement of search agents towards the best neighbor.
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Fig. 4. Converge towards position of best search agent.

3.1.3. Converge towards the best search agent
The search agent can maintain its position towards the best search
agent (i.e., food source) which is shown in Fig. 4.

- FS+A-PD, ifr,, >05
&m={ " and = ©®)

FS—A-PD, ifr,, <05

where Pp(x’) is the updated position of tunicate with respect to the
position of food source FS.

3.1.4. Swarm behavior

In order to mathematically simulate the swarm behavior of tunicate,
the first two optimal best solutions are saved and update the positions
of other search agents according to the position of the best search
agents. The following formula is proposed to define the swarm behavior
of tunicate:

P,(x)+ Py(x+1)
2+¢

P(x+1)= @
Fig. 5 shows how search agents can updates their positions according
to the position of ﬁ,,(x). The final position would be in a random place,
within a cylindrical or cone-shaped, which is defined by the position of
tunicate. The pseudo code of the proposed TSA algorithm is shown in
Algorithm 1. There are some important points about the TSA algorithm
which are described as:

- A, G, and F assist the solutions to behave randomly in a given
search space and responsible to avoid the conflicts between dif-
ferent search agents.

» The possibility of better exploration and exploitation phases is
done by the variations in vectors A, 5, and F.

» The jet propulsion and swarm behaviors of tunicate in a given
search space defines the collective behavior of TSA algorithm (see
Fig. 6).
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Fig. 5. 3D position vectors of tunicate.

3.2. Steps and flowchart of TSA

The steps and flowchart (see Fig. 7) of the proposed TSA are given
below.
Step 1: Initialize the tunicate population f’;,.

Step 2: Choose the initial parameters and maximum number of itera-
tions.

Step 3: Calculate the fitness value of each search agent.

Step 4: After computing the fitness value, the best search agent is
explored in the given search space.

Step 5: Update the position of each search agent using Eq. (7).

Step 6: Adjust the updated search agent which goes beyond the bound-
ary in a given search space.

Step 7: Compute the updated search agent fitness value. If there is a
better solution than the previous optimal solution, then update P,.

Iteration=3

Iteration=1

Iteration=9

30

20

30
20 30
10 20
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Step 8: If the stopping criterion is satisfied, then the algorithm stops.
Otherwise, repeat the Steps 5-8.

Step 9: Return the best optimal solution which is obtained so far.
3.3. Computational complexity

In this subsection, the computational complexity of proposed TSA
algorithm is discussed. Both the time and space complexities of the
proposed algorithm are given below.

3.3.1. Time complexity

1. The initialization of population process needs O(n X d) time,
where n is the population size and d defines the dimension of
a given test problem.

2. The agent fitness needs O(Max;,,aions X 1 X d) time, where
MaxX;,,a1ions 1S the maximum number of iterations.

3. TSA requires O(N) time, where N defines the jet propulsion
and swarm behaviors of tunicate for better exploration and
exploitation.

Hence, the total time complexity of TSA algorithm is O(M ax;,,aiions X
nxXdx N).

3.3.2. Space complexity

The space complexity of TSA algorithm is O(n x d), which is con-
sidered as the maximum amount of space during its initialization
process.

4. Experimental results and discussions

This section describes the simulation and experimentation of TSA on
seventy-four standard benchmark test functions. The detailed descrip-
tion of these benchmark test functions are discussed below. Further, the
results are analyzed and compared with well-known metaheuristics.

4.1. Description of benchmark test functions
The seventy-four benchmark test functions are applied on the pro-
posed algorithm to demonstrate its applicability and efficiency. These

functions are divided into six main categories: Unimodal

Iteration=35 Iteration=7

Iteration=13 Iteration=15
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Fig. 6. Jet propulsion and swarm behaviors of tunicate in two-dimensional environment.
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Algorithm 1 Tunicate Swarm Algorithm

Input: Tunicate population f’;,
Output: Optimal fitness value FS

/* Calculate the fitness values of each search agent using ComputeFitness function*/

/* Rand() is a function to generate the random number in range [0, 1] */

1: procedure TSA
2: Initialize the parameters A, G, F, M, and Max;,,,qions
3: Set P,;, < 1
4 Set P, <4
5: Set Swarm < 0
6: while (x < M ax;;,,4ions) dO
7: fori < 1to2do /* Looping for compute swarm behavior */
8: FS eComputeFitness(ﬁp)
/* Jet propulsion behavior */
9: €1, C2,C3, " gpq < Rand()
10: M < le,-,, ey X Py — Pm,-,,J
11: Fe2xe
12: G« ¢ +ey3— F
13: A—G/M
14: PD « ABS(FSS — yyq X Py(x))
/* Swarm behavior */
15: if(r,,, <0.5) then
16: Swarm < Swarm + FS + AX PD
17: else
18: Swarm « Swarm + F.S — A X PD
19: end if
20: end for
21: Pp_{x) « Swarm/(2 + ¢;)
22: Swarm < 0
23: Update the parameters [f, é, F, and M
24: x < x+1

25: end while
26: return F.S
27: end procedure

28: procedure COMPUTEFITNESS(};[,)
29: fori < 1tondo

30: FIT,[i] < FitnessFunction(Pp(;, )
31: end for
32: FIT,, < BEST(FIT,[])

33: return FIT,

Pbpest
34: end procedure

35: procedure BEST(FI T,)
36: Best < FITp[O]
37: fori < 1 tondo

38: if(FITp[iJ < Best) then
39: Best < FITp[i]
40: end if

41: end for
42: return Best
43: end procedure

/* Return the best fitness value */

/* Here, n represents the dimension of a given problem */
/* Calculate the fitness of each individual */

/* Calculate the best fitness value using BEST function */

(Digalakis and Margaritis, 2001), Multimodal (Yang, 2010), Fixed-
dimension Multimodal (Digalakis and Margaritis, 2001; Yang, 2010),
Composite (Liang et al., 2005), CEC-2015 (Chen et al., 2014), and CEC-
2017 (Awad et al., 2016) test functions. The description of these test
functions is given in Appendix.

4.2. Experimental setup

The proposed TSA is compared with well-known metaheuristic al-
gorithms namely Spotted Hyena Optimizer (SHO) (Dhiman and Kumar,
2017), Grey Wolf Optimizer (GWO) (Mirjalili et al., 2014), Parti-
cle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995), Multi-
verse Optimizer (MVO) (Mirjalili et al., 2016), Sine Cosine Algorithm

(SCA) (Mirjalili, 2016), Gravitational Search Algorithm (GSA) (Rashedi
et al., 2009), Genetic Algorithm (GA) (Holland, 1992), Emperor Pen-
guin Optimizer (EPO) (Dhiman and Kumar, 2018b), and jSO (Brest
et al.,, 2017). Table 1 shows the parameter settings of all algorithms.
The experimentation has been done on Matlab R2017b version using
64 bit Core i5 processor with 3.20 GHz and 16 GB main memory.

4.3. Performance comparison

The performance of proposed TSA algorithm is compared with state-
of-the-art optimization algorithms on unimodal, multimodal, fixed-
dimension multimodal, composite, CEC-2015, and CEC-2017 bench-
mark test functions. The average and standard deviation is considered
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Fig. 7. Flowchart of the proposed TSA algorithm.

as the best optimal solution on benchmark functions. For benchmark
test functions, the proposed algorithm simulates 30 independent runs
in which each run employs 1000 number of iterations.

4.3.1. Evaluation of test functions F, — F,

Table 2 shows the mean and standard deviation of best obtained
optimal solution on unimodal benchmark test functions. For F|, F,, and
F; benchmark test functions, SHO is the best optimizer whereas TSA is
the second best optimizer in terms of average and standard deviation.
TSA obtains better competitor results on F,, Fs, F;, and F,; benchmark

Engineering Applications of Artificial Intelligence 90 (2020) 103541

Table 1
Parameters settings.
#  Algorithms Parameters Values
1. Tunicate Swarm Algorithm (TSA) Search agents 80
Parameter P, 1
Parameter P, 4
Number of generations 1000
2. Spotted Hyena Optimizer (SHO) Search agents 80
Control parameter h) [5, 0]
M constant [0.5, 1]
Number of generations 1000
3. Grey Wolf Optimizer (GWO) Search agents 80
Control parameter (@) [2, 0]
Number of generations 1000
4. Particle Swarm Optimization (PSO) Number of particles 80
Inertia coefficient 0.75
Cognitive and social coeff 1.8, 2
Number of generations 1000
5. Multi-Verse Optimizer (MVO) Search agents 80

Wormhole existence Prob. [0.2, 1]

Traveling distance rate [0.6, 1]
Number of generations 1000
6. Sine Cosine Algorithm (SCA) Search agents 80
Number of elites 2
Number of generations 1000
7. Gravitational Search Algorithm (GSA) Search agents 80
Gravitational constant 100
Alpha coefficient 20
Number of generations 1000
8. Genetic Algorithm (GA) Population size 80
Crossover 0.9
Mutation 0.05
Number of generations 1000
9. Emperor Penguin Optimizer (EPO) Search agents 80
Temperature profile (7’)  [1, 1000]
A constant [-1.5, 1.5]
Function S() [0, 1.5]
Parameter M 2
Parameter f [2, 3]
Parameter / [1.5, 2]
Number of generations 1000

test functions. It is seen from results that TSA is very effective and
competitive as compared with other metaheuristic algorithms.

4.3.2. Evaluation of test functions Fg — F,3

Tables 3 and 4 show the computational performance of above-
mentioned algorithms on multimodal benchmark test functions (Fg —
F)3) and fixed-dimension multimodal benchmark test functions (F,4 —
F,3), respectively. These tables show that TSA is able to find near opti-
mal solution on nine benchmark test problems (i.e., Fg, Fyy, Fy3, F4. Fi5,
F\7, Fig, Fi9, and F),). For Fy, F;;, and F;4 benchmark test functions,
SHO provides near optimal results than TSA algorithm. TSA is the
second best optimizer on these benchmark test functions. PSO generates
best optimal solution for F}, and F,, benchmark test functions. For F,;
benchmark test function, GWO and TSA are the first and second best
metaheuristic optimization algorithms, respectively. The results show
that TSA obtains very competitive results in majority of the benchmark
test problems.

4.3.3. Evaluation of test functions F,, — Fyy

Table 5 shows the experimental results on composite benchmark
test functions. The results show that over 3 out of 6 benchmark func-
tions, TSA obtains better than the other approaches. GSA obtains best
optimal solution for F,, benchmark test function. For F,3 and F,y
benchmark test functions, SHO provides better optimal results than TSA
algorithm. However, TSA is the third best optimization algorithm for
F,,, Fpg, and F,q benchmark test functions.



Table 2

Mean and standard deviation of best optimal solution for 30 independent runs on unimodal benchmark test functions.
F  TSA SHO GWO PSO MVO SCA GSA GA EPO

Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std

F, 7.71E-38 7.00E-21 0.00E+00 0.00E+00 4.61E-23 7.37E-23 4.98E-09 1.40E-08 2.81E-01 1.11E-01 3.55E-02 1.06E-01 1.16E-16 6.10E-17 1.95E-12 2.01E-11 5.71E-28 8.31E-29
F, 8.48E-39 5.92E-41 0.00E+00 0.00E+00 1.20E-34 1.30E-34 7.29E-04 1.84E-03 3.96E-01 1.41E-01 3.23E-05 8.57E-05 1.70E-01 9.29E-01 6.53E-18 5.10E-17 6.20E-40 3.32E-40
F; 1.15E-21 6.70E-21  0.00E+00 0.00E+00 1.00E-14 4.10E-14 1.40E+01 7.13E+00 4.31E+01 8.97E+00 4.91E+03 3.89E+03 4.16E+02 1.56E+02 7.70E-10 7.36E-09 2.05E-19 9.17E-20
F, 1.33E-23 1.15E-22 7.78E-12 8.96E-12 2.02E-14 2.43E-14 6.00E-01 1.72E-01 8.80E-01 2.50E-01 1.87E+01 8.21E+00 1.12E+00 9.89E-01 9.17E+01 5.67E+01 4.32E-18 3.98E-19
F; 5.13E+00 4.76E-03 8.59E+00 5.53E-01 2.79E+01 1.84E+00 4.93E+01 3.89E+01 1.18E+02 1.43E+02 7.37E+02 1.98E+03 3.85E+01 3.47E+01 5.57E+02 4.16E+01 5.07E+00 4.90E-01
F, 7.10E-21 1.12E-25 2.46E-01 1.78E-01 6.58E-01 3.38E-01 9.23E-09 1.78E-08 3.15E-01 9.98E-02 4.88E+00 9.75E-01 1.08E-16 4.00E-17 3.15E-01 9.98E-02 7.01E-19 4.39E-20
F, 3.72E-07 5.09E-07 3.29E-05 2.43E-05 7.80E-04 3.85E-04 6.92E-02 2.87E-02 2.02E-02 7.43E-03 3.88E-02 5.79E-02 7.68E-01 2.77E+00 6.79E-04 3.29E-03 2.71E-05 9.26E-06

0 12 [PSUDS T’y WPSDMY YT MDY °S

I¥SE0T (0Z0Z) 06 oudsipiu] PRYNLY fo suonpoyddy Surpouidug



Table 3

Mean and standard deviation of best optimal solution for 30 independent runs on multimodal benchmark test functions.
F TSA SHO GWO PSO MVO SCA GSA GA EPO

Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std

F;  —8.93E+02 4.15E+01 -1.16E+02 2.72E+01 -6.14E+02 9.32E+01 —6.01E+02 1.30E+02 -6.92E+02 9.19E+01 -3.81E+02 2.83E+01 -2.75E+02 5.72E+01 -5.11E+02 4.37E+01 -8.76E+02 5.92E+01
Fy, 5.70E-03 1.46E-03 0.00E+00 0.00E+00 4.34E-01 1.66E+00 4.72E+01 1.03E+01 1.01E+02 1.89E+01 2.23E+01 3.25E+01 3.35E+01 1.19E+01 1.23E-01 4.11E+01 6.90E-01 4.81E-01
F, 9.80E-19 4.51E-12 248E+00 1.41E+00 1.63E-14 3.14E-15 3.86E-02 2.11E-01 1.15E4+00 7.87E-01 1.55E+01 8.11E+00 8.25E-09 1.90E-09 5.31E-11 1.11E-10 8.03E-16 2.74E-14
F,; 1.00E-07  7.46E-07 0.00E+00 0.00E+00 2.29E-03 5.24E-03 5.50E-03  7.39E-03 5.74E-01 1.12E-01 3.01E-01 2.89E-01 8.19E+00 3.70E+00 3.31E-06 4.23E-05 4.20E-05 4.73E-04
F,, 6.07E-06 2.72E-05 3.68E-02 1.15E-02 3.93E-02 2.42E-02 1.05E-10 2.06E-10 1.27E+00 1.02E+00 5.21E+01 2.47E+02 2.65E-01 3.14E-01 9.16E-08 4.88E-07 5.09E-03 3.75E-03
F;; 0.00E+00  0.00E+00 9.29E-01  9.52E-02 4.75E-01  2.38E-01 4.03E-03  5.39E-03 6.60E-02  4.33E-02 2.81E+02 8.63E+02 5.73E-32 8.95E-32 6.39E-02  4.49E-02 0.00E+00  0.00E+00
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Table 4

Mean and standard deviation of best optimal solution for 30 independent runs on fixed-dimension multimodal benchmark test functions.
F TSA SHO GWO PSO MVO SCA GSA GA EPO

Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std

F,, 1.03E+00 2.11E-04 9.68E+00  3.29E+00 3.71E+00  3.86E+00 2.77E+00  2.32E+00 9.98E+01 9.14E-12 1.26E+00 6.86E-01 3.61E+00 2.96E+00 4.39E+00 4.41E-02 1.08E+00 4.11E-02
F5 8.10E-05 4.06E-05 9.01E-03  1.06E-03 3.66E—-02  7.60E-02 9.09E-03  2.38E-03 7.15E-02 1.26E-01 1.01E-02 3.75E-03 6.84E-02 7.37E-02 7.36E-02 2.39E-03 8.21E-03 4.09E-03
F, -1.02E+00 1.99E-09 -1.03E+00 2.86E-11 -1.02E+00 7.02E-09 -1.02E+00 0.00E+00 -1.02E+00 4.74E-08 -1.02E+00 3.23E-05 -1.02E+00 0.00E+00 -1.02E+00 4.19E-07 -1.02E+00 9.80E-07
F|; 3.96E-01 3.71E-09 3.97E-01 2.46E-01 3.98E-01 7.00E-07 3.97E-01 9.03E-16 3.98E-01 1.15E-07 3.98E-01 7.61E-04 3.98E-01 1.13E-16 3.98E-01 3.71E-17 3.98E-01 5.39E-05
Fi3 3.00E+00 3.56E-09 3.00E+00  9.05E+00 3.00E+00 7.16E-06 3.00E+00  6.59E-05 3.00E+00 1.48E+01 3.00E+00 2.25E-05 3.00E+00 3.24E-02 3.00E+00 6.33E-07 3.00E+00 1.15E-08
Fy —3.89E+00 3.01E-09 -3.71E+00 4.39E-01 -3.84E+00 1.57E-03 -3.80E+00 3.37E-15 -3.77E+00 3.53E-07 -3.75E+00 2.55E-03 -3.86E+00 4.15E-01 -3.81E+00 4.37E-10 -3.86E+00 6.50E—07
F,, -2.97E+00 2.10E-01 -1.44E+00 5.47E-01 -3.27E+00 7.27E-02 -3.32E+00 2.66E-01 -3.23E+00 5.37E-02 -2.84E+00 3.71E-01 -1.47E4+00 5.32E-01 -2.39E+00 4.37E-01 -2.81E+00 7.11E-01
F,, -7.01E+00 1.23E+00 -2.08E+00 3.80E-01 -9.65E+00 1.54E+00 -7.54E+00 2.77E+00 -7.38E+00 2.91E+00 -2.28E+00 1.80E+00 -4.57E+00 1.30E+00 -5.19E+00 2.34E+00 -8.07E+00 2.29E+00
F,, —-13.07E+00 3.15E-03 -1.61E+00 2.04E-04 -1.04E+00 2.73E-04 -8.55E+00 3.08E+00 -8.50E+00 3.02E+00 -3.99E+00 1.99E+00 -6.58E+00 2.64E+00 -2.97E+00 1.37E-02 -10.01E+00 3.97E—02
F,; -3.51E+00 3.10E-03 -1.68E+00 2.64E-01 -1.05E+01 1.81E-04 -9.19E+00 2.52E4+00 -8.41E+00 3.13E4+00 -4.49E+00 1.96E+00 -9.37E4+00 2.75E+00 -3.10E+00 2.37E+00 -3.41E+00 1.11E-02
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Table 5

Mean and standard deviation of best optimal solution for 30 independent runs on composite benchmark test functions.
F TSA SHO GWO PSO MVO SCA GSA GA EPO

Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std

F,, 1.33E+02 4.10E+01 2.30E+02 1.37E4+02 8.39E+01 8.42E+01 6.00E+01 8.94E+01 1.40E+02 1.52E+02 1.20E+02 3.11E+01 4.49E-17 2.56E-17 5.97E+02 1.34E+02 2.33E+02 9.22E+01
F);  3.00E+01 2.02E+01  4.08E+02  9.36E+01 1.48E+02 3.78E+01 2.44E+02 1.73E+02 2.50E+02 1.44E+02 1.14E4+02 1.84E+00 2.03E+02 4.47E+02 4.09E+02 2.10E+01 4.10E+01 3.09E+01
F,s 3.34E+02 4.36E+01 3.39E+02 3.14E+01 3.53E+02 5.88E+01 3.39E+02 8.36E+01 4.05E+02 1.67E+02 3.89E+02 5.41E+01 3.67E+02 8.38E+01 9.30E+02 8.31E+01 3.39E+02 5.03E+01
F,;, 2.40E+02 1.13E+01 7.26E+02 1.21E+02 4.23E+02 1.14E+02 4.49E+02 1.42E+02 3.77E+02 1.28E+02 4.31E+02 2.94E+01 5.32E+02 1.01E+02 4.97E+02 3.24E+01 3.44E+02 2.17E+01
F,;  1.20E+02  4.00E+01 1.06E+02 1.38E+01 1.36E+02 2.13E+02 2.40E+02 4.25E+02 2.45E+02 9.96E+01 1.56E+02 8.30E+01 1.44E+02 1.31E+02 1.90E+02 5.03E+01 1.46E+02 7.06E+01
F,y 6.41E+02 6.00E+02 5.97E+02 4.98E+00 8.26E+02 1.74E+02 8.22E+02 1.80E+02 8.33E+02 1.68E+02 6.06E+02 1.66E+02 8.13E+02 1.13E+02 6.65E+02 3.37E+02 7.43E+02 9.09E+02
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Table 6

Mean and standard deviation of best optimal solution for 30 independent runs on CEC-2015 benchmark test functions.
F TSA SHO GWO PSO MVO SCA GSA GA EPO

Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std

CEC-1 1.24E+05 1.13E+06 2.28E+06 2.18E+06 2.02E+06 2.08E+06 4.37E+05 4.73E+05 1.47E+06 2.63E+06 6.06E+05 5.02E+05 7.65E+06 3.07E+06 3.20E+07 8.37E+06 1.50E+05 1.21E+06
CEC-2 5.55E+05 1.00E+06 3.13E+05 4.19E+05 5.65E+06 6.03E+06 9.41E+03 1.08E+04 1.97E+04 1.46E+04 1.43E+04 1.03E+04 7.33E+08 2.33E+08 4.58E+03 1.09E+03 6.70E+06 1.34E+08
CEC-3 3.20E+02 2.36E-03 3.20E+02 3.76E-02 3.20E+02 7.08E—-02 3.20E+02 8.61E-02 3.20E4+02 9.14E-02 3.20E+02 3.19E-02 3.20E+02 7.53E-02 3.20E4+02 1.11E-05 3.20E+02 1.16E-03
CEC-4 570E+02 3.30E+01 4.11E+02 1.71E+01 4.16E+02 1.03E+01 4.09E+02 3.96E+00 4.26E+02 1.17E+01 4.18E+02 1.03E+01 4.42E+02 7.72E+00 4.39E+02 7.25E+00 4.10E+02 5.61E+01
CEC-5 875E+02 3.18E+02 9.13E+02 1.85E+02 9.20E+02 1.78E+02 8.65E+02 2.16E+02 1.33E+03 3.45E+02 1.09E+03 2.81E+02 1.76E+03 2.30E+02 1.75E+03 2.79E+02 9.81E+02 2.06E+02
CEC-6 2.10E4+03 1.28E+04 1.29E+04 1.15E+04 2.26E+04 2.45E+04 1.86E+03 1.93E+03 7.35E4+03 3.82E+03 3.82E+03 2.44E4+03 2.30E+04 2.41E+04 3.91E4+06 2.70E+06 2.05E+03 1.05E+04
CEC-7 7.02E+02 3.17E-02 7.02E+02 6.76E-01 7.02E+02 7.07E-01 7.02E+02 7.75E-01 7.02E+02 1.10E+00 7.02E+02 9.40E-01 7.06E+02 9.07E-01 7.08E+02 1.32E+00 7.02E+02 5.50E—01
CEC-8 1.41E+03 1.01E+03 1.86E+03 1.98E+03 3.49E+03 2.04E+03 3.43E+03 2.77E+03 9.93E+03 8.74E+03 2.58E+03 1.61E+03 6.73E+03 3.36E+03 6.07E+05 4.81E+05 1.47E+03 2.34E+03
CEC-9 1.00E+03 1.65E+01 1.00E+03 1.43E-01 1.00E+03 1.28E-01 1.00E+03 7.23E-02 1.00E+03 2.20E-01 1.00E+03 5.29E-02 1.00E+03 9.79E-01 1.00E+03 5.33E+00 1.00E+03 1.51E+01
CEC-10 1.19E+03 4.42E+04 2.00E+03 2.73E+03 4.00E+03 2.82E+03 3.27E+03 1.84E+03 8.39E+03 1.12E+04 2.62E+03 1.78E+03 9.91E+03 8.83E+03 3.42E+05 1.74E+05 1.23E+03 2.51E+04
CEC-11 1.34E+03 1.21E+01 1.38E+03 2.42E+01 1.40E+03 5.81E+01 1.35E+03 1.12E+02 1.37E+03 8.97E+01 1.39E+03 5.42E+01 1.35E+03 1.11E+02 1.41E+03 7.73E+01 1.35E+03 1.41E+01
CEC-12 1.30E+03 5.35E+00 1.30E+03 7.89E-01 1.30E+03 6.69E-01 1.30E+03 6.94E—-01 1.30E+03 9.14E-01 1.30E+03 8.07E-01 1.31E+03 1.54E+00 1.31E+03 2.05E+00 1.30E+03 7.50E+00
CEC-13 1.30E+03 4.40E-07 1.30E+03 2.76E-04 1.30E4+03 1.92E-04 1.30E+03 5.44E-03 1.30E+03 1.04E-03 1.30E+03 2.43E-04 1.30E4+03 3.78E-03 1.35E+03 4.70E+01 1.30E4+03 6.43E-05
CEC-14 3.16E+03 1.76E+03 4.25E+03 1.73E+03 7.29E+03 2.45E+03 7.10E+03 3.12E+03 7.60E+03 1.29E+03 7.34E+03 2.47E+03 7.51E+03 1.52E+03 9.30E+03 4.04E+02 3.22E+03 2.12E+03
CEC-15 1.60E+03 3.45E+01 1.60E+03 3.76E+00 1.61E+03 4.94E+00 1.60E+03 2.66E—07 1.61E+03 1.13E+01 1.60E+03 1.80E-02 1.62E+03 3.64E+00 1.64E+03 1.12E+01 1.60E+03 5.69E+01
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Table 7
Mean and standard deviation of best optimal solution for 30 independent runs on CEC-2017 benchmark test functions.
F TSA SHO GWO PSO MVO SCA GSA GA iSO
Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std Ave Std

C-1 270E+04 1.21E+07 2.38E+05 2.28E+07 2.12E+05 2.18E+07 4.47E+04 4.83E+06 1.57E+05 2.73E+07 6.16E+04 5.12E+06 7.75E+05 3.17E+07 3.30E+06 8.47E+07 0.00E+00 0.00E+00
C-2 5.82E+05 3.41E+09 3.23E+04 4.29E+06 5.75E+05 6.13E+07 9.51E+03 1.18E+05 1.07E+03 1.56E+05 1.53E+04 1.13E+05 7.43E+07 2.43E+09 4.68E+03 1.19E+04 0.00E+00 0.00E+00
C-3 3.30E+02 2.38E-05 3.30E+02 3.86E-03 3.30E+02 7.18E-03 3.30E+02 8.71E-03 3.30E+02 9.24E-03 3.30E+02 3.29E-03 3.30E+02 7.63E-03 3.30E+02 1.21E-06 0.00E+00 0.00E+00
C-4 3.40E+01 4.62E4+02 4.21E4+02 1.81E4+02 4.26E4+02 1.13E+02 4.19E4+02 3.06E4+01 4.36E4+02 1.27E4+02 4.28E4+02 1.13E+02 4.52E4+02 7.82E+02 4.49E+02 7.35E+02 5.62E+01 4.88E+01
C-5 1.40E+01 2.19E+03 9.23E+02 1.95E+03 9.30E+02 1.88E+03 8.75E+02 2.26E+03 1.43E+04 3.55E+04 1.19E+04 2.91E+03 1.86E+03 2.40E+03 1.85E+03 2.89E+03 1.64E+01  3.46E+00
C-6 217E+04 2.13E+05 1.39E+04 1.25E+05 2.36E+03 2.55E+05 1.96E+03 1.03E+04 7.45E+03 3.92E+04 3.92E+04 2.54E+04 2.40E+04 2.51E+05 3.01E+05 2.80E+07 1.09E-06 2.62E—06
c-7 7.12E+02 4.49E-02 7.12E4+02 6.86E-02 7.12E+02 7.17E-02 7.12E+03 7.85E-02 7.12E4+02 1.20E+01 7.12E+03 9.50E-02 7.16E+02 9.17E-02 7.18E+02 1.42E+01 6.65E+01 3.47E+00
C-8 1.56E+01 3.00E+04 1.96E+03 1.08E+04 3.59E+04 2.14E+04 3.53E+03 2.87E+04 9.03E+03 8.84E+05 2.68E+04 1.71E+04 6.83E+03 3.46E+04 6.17E+04 4.91E+08 1.70E+01  3.14E+00
C-9 1.10E+03 1.50E+02 1.10E+04 1.53E-02 1.10E+04 1.38E-02 1.10E+03 7.33E-02 1.10E+04 2.30E-01 1.10E+03 5.39E-03 1.10E+03 9.89E-02 1.10E+04 5.43E+01 0.00E+00 0.00E+00
C-10 1.32E+03 1.50E+04 2.10E+03 2.83E+04 4.10E+04 2.92E+04 3.37E+03 1.94E+04 8.49E+04 1.22E+05 2.72E+03 1.88E+04 9.01E+04 8.93E+04 3.52E+04 1.84E+06 3.14E+03 3.67E+02
C-11 1.45E+01 2.76E+01 1.48E+03 2.52E+02 1.50E+04 5.91E+02 1.45E+03 1.22E+03 1.47E+04 8.07E+02 1.49E+04 5.52E+02 1.45E+04 1.21E+03 1.51E+03 7.83E+02 2.79E+01  3.33E+00
C-12 1.40E+03 6.79E+00 1.40E+04 7.99E-02 1.40E+03 6.79E-02 1.40E+04 6.04E-02 1.40E+03 9.24E-02 1.40E+05 8.17E-02 1.41E+03 1.64E+01 1.41E+06 2.15E+01 1.68E+03 5.23E+02
C-13 1.40E+01 5.49E-06 1.40E+02 2.86E-05 1.40E+06 1.02E-05 1.40E+03 5.54E-04 1.40E+04 1.14E-04 1.40E+03 2.53E-05 1.40E+04 3.88E—04 1.45E+02 4.80E+02 3.06E+01 2.12E+01
C-14 3.33E+03 2.00E+03 4.35E+04 1.83E+04 7.39E+03 2.55E+04 7.20E+03 3.22E+04 7.70E+04 1.39E+04 7.44E+04 2.57E+04 7.61E+03 1.62E+04 9.40E+03 4.14E4+03 2.50E+01 1.87E+00
C-15 1.70E+03 9.86E+01 1.70E+03 3.86E+01 1.71E+04 4.04E+01 1.70E+03 2.76E-05 1.71E+06 1.23E+02 1.70E+03 1.90E-03 1.72E+06 3.74E+01 1.74E+06 1.22E+01 2.39E+01 2.49E+00
C-16 246E+04 3.20E+08 3.28E+05 3.18E+09 3.02E+06 3.08E+09 5.37E+05 5.73E+08 2.47E+05 3.63E+09 7.06E+05 6.02E+09 8.65E+05 4.07E+09 4.20E+06 9.37E+09 4.51E+02 1.38E+02
C-17 848E+05 7.03E+06 4.13E+04 5.19E+04 6.65E+06 7.03E+05 8.41E+04 2.08E+04 2.97E+04 2.46E+04 2.43E+05 2.03E+03 8.33E+06 3.33E+07 5.58E+03 2.09E4+03 2.83E+02 8.61E+01
C-18 4.20E+02 7.47E-05 4.20E+02 4.76E-04 4.20E+02 8.08E—-04 4.20E+02 9.61E-04 4.20E+02 8.14E-04 4.20E+03 4.19E-04 4.20E+02 8.53E-04 4.20E+03 2.11E-07 2.43E+01 2.02E+00
C-19 4.05E+02 5.60E+02 5.11E+03 2.71E+02 5.16E+02 2.03E+02 1.09E+01 4.90E-01 5.26E+02 2.17E+02 5.18E+03 2.03E+02 5.42E+02 8.72E+02 5.39E+03 8.25E+02 1.41E+01 2.26E+00
C-20 1.11E+02 4.07E+01 8.13E+03 2.85E+01 8.20E+02 2.78E+00 7.65E+02 3.16E+01 2.33E+03 4.45E+02 2.09E+03 3.81E+01 2.76E+04 3.30E+02 2.75E4+03 3.79E+01 1.40E4+02 7.74E+01
C-21 3.02E+03 2.16E+04 2.29E+03 2.15E+04 3.26E+04 3.45E+05 2.86E+03 2.93E+03 8.35E+04 4.82E+03 4.82E+04 3.44E+04 3.30E+04 3.41E+04 4.91E+06 3.70E+07 2.19E+02 3.77E+00
C-22 8.02E+02 5.47E-02 8.02E+02 7.76E-01 8.02E+03 8.07E-01 8.02E+02 8.75E-01 8.02E+02 2.10E+01 8.02E+03 8.40E-01 8.06E+03 8.07E—02 8.08E+02 2.32E+00 1.49E+03 1.75E+03
C-23 3.35E+03 1.31E+03 2.86E+03 2.98E+04 4.49E+04 3.04E+04 4.43E+04 3.77E+04 8.93E+04 9.74E+04 3.58E+03 2.61E+04 7.73E+03 4.36E+04 7.07E+04 5.81E+06 4.30E+02 6.24E+00
C-24 2.00E+04 6.76E+01 2.00E+04 2.43E-02 2.00E+04 2.28E-02 2.00E+04 7.23E-03 2.00E+04 3.20E-02 2.00E+04 6.29E-03 2.00E+04 8.79E-02 2.00E+04 6.33E4+01 5.07E+02 4.13E+00
C-25 2.22E+02 6.46E+05 3.00E+04 3.73E+04 5.00E+04 3.82E+04 4.27E+04 2.84E+04 9.39E+04 2.12E+05 3.62E+04 2.78E+04 8.91E+04 6.83E+04 4.42E+06 2.74E+06 4.81E+02 2.80E+00
C-26 1.00E+03 2.26E+01 2.38E+04 3.42E+02 2.40E+04 6.81E+02 2.35E+05 2.12E+03 2.37E+04 9.97E+02 2.39E+04 6.42E+02 2.35E+04 2.11E+03 2.41E+04 8.73E+02 1.13E+03 5.62E+01
C-27 230E+04 1.40E+00 2.30E+04 8.89E-02 2.30E+04 7.69E-02 2.30E+04 7.94E-02 2.30E+04 8.14E-02 2.30E+04 9.07E-02 2.31E+04 3.54E+01 2.31E4+04 3.05E+00 5.11E+02 1.11E+401
C-28 5.30E+04 6.11E-06 5.30E+04 3.76E-05 5.30E+04 3.92E-05 5.30E+04 6.44E-04 5.30E+04 2.04E—-04 5.30E+04 3.43E-05 5.30E+04 4.78E—-04 5.35E+04 4.70E+02 4.60E+02 6.84E+00
C-29 3.20E+02 4.66E+03 5.25E+04 2.73E+04 8.29E+03 3.45E+04 8.10E+04 4.12E+04 8.60E+03 2.29E+05 8.34E+04 3.47E+05 8.51E+03 2.52E+04 8.30E+04 5.04E+03 3.63E+02 1.32E+01
C-30 2.60E+04 5.55E+01 2.60E+04 4.76E+01 2.61E+04 5.94E+01 2.60E+04 3.66E-04 2.61E+04 2.13E+02 2.60E+04 2.80E-03 2.62E+04 4.64E+01 2.64E+04 2.12E4+02 6.01E4+05 2.99E+04
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4.3.4. Evaluation of IEEE CEC-2015 test functions (CEC1 — CEC15)

Table 6 reveals the performance of TSA and other optimization
algorithms on IEEE CEC-2015 benchmark test functions. It is seen from
Table 6 that TSA generates better results for CEC —1,CEC —3,CEC —
7,CEC-8,CEC-9,CEC-10,CEC-11,CEC-12,CEC—-13,CEC-14,
and CEC — 15 benchmark test functions. For CEC — 4,CEC — 5, and
C EC—-6 benchmark test functions, PSO performance is better than other
algorithms in terms of fitness value. TSA is the second best optimizer
on these test functions.

4.3.5. Evaluation of IEEE CEC-2017 test functions (C1-C30)

Table 7 reveals the performance of proposed TSA algorithm and
other competitive algorithms on IEEE CEC-2017 benchmark test func-
tions. The results show that TSA generates best optimal solution for
c-4,Cc-5,Cc-8,Cc-10,Cc-11,C-12,C-13,C-20,C-22,C-25,C—
26,C — 29, C — 30 benchmark test functions.

4.4. Convergence analysis

The convergence curves of proposed TSA algorithm is shown in
Fig. 8. It is analyzed that TSA is very competitive over benchmark
functions. TSA algorithm has three different behaviors of convergence.
In the starting stage of iteration process, the convergence efficiency
of TSA algorithm is more quickly in a given search space. In second
stage of iteration, TSA converges with the direction of optimum when
final iteration reaches. The last iteration process shows the express
convergence behavior from the initial stage of iterations. The results
show that TSA algorithm maintains a balance between exploration
and exploitation. The search history is another metric to determine
how TSA explores and exploits in a given search space. The search
history of TSA is depicted in Fig. 8. It is observed from Fig. 8 that
TSA explore most promising area in the given search space for bench-
mark test functions. For unimodal test functions, the sample points
are sparsely distributed in the non-promising area. Whereas, the most
of sample points are distributed around the promising area for mul-
timodal and fixed-dimension multimodal test functions. This is due
to the difficulty level of these test functions. TSA does not stuck in
local optima and explores the entire search space. The distribution
of sample points is around the true optimal solution, which ensures
its exploitation capability. Therefore, TSA has both exploration and
exploitation capability.

4.5. Sensitivity analysis

The proposed TSA algorithm employs four parameters, i.e., maxi-
mum number of iterations, number of search agents, parameter P,;,,
and parameter P,,,.

1. Maximum number of iterations: TSA algorithm was simulate for
different number of iteration processes. The values of M ax;;,,aion
used in this work are 100, 500, 800, and 1000. Table 8 and
Fig. 9(a) show the variations of iterations on various benchmark
test functions. The results show that TSA converges towards the
optimal solution when the number of iterations is increased.

2. Number of search agents: TSA algorithm was simulate for dif-
ferent values of search agent (i.e., 30, 50, 80, 100). Table 9
and Fig. 9(b) show the variations of different number of search
agents on benchmark test functions. It is analyzed from Fig. 9(b)
that the value of fitness function decreases when number of
search agents increases.

3. Variation in parameter P,;,: To investigate the effect of pa-
rameter P,;,, TSA algorithm was run for different values of

P,., keeping other parameters fixed. The values of P,;, used in

experimentation are 1, 2, 3, and 4. Table 10 and Fig. 9(c) show

the variation of P,,;, on different benchmark test functions. The
results show that TSA generates better optimal results when the

value of P, is set to 1.

min

P
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4. Variation in parameter P,,.: To investigate the effect of pa-
rameter P,,., TSA was simulate for 1, 2, 3, and 4 by keeping
other parameters fixed. Table 11 and Fig. 9(d) show the effect
of P,,, on various benchmark test functions. It is seen that TSA
generates better optimal results when the value of P, is fixed

to 4.

ax

4.6. Scalability study

This subsection describes the effect of scalability on various test
functions by using proposed TSA. The dimensionality of the test func-
tions is made to vary as 30, 50, 80, and 100. Fig. 10 shows the
performance of TSA algorithm on scalable benchmark test functions.
It is observed that the performance of TSA is not too much degraded
when the dimensionality of search space is increased. The results reveal
that the performance of TSA is least affected with the increase in
dimensionality of search space. This is due to better capability of the
proposed TSA for balancing between exploration and exploitation.

4.7. Statistical testing

Apart from standard statistical analysis such as mean and standard
deviation, Analysis of Variance (ANOVA) test has been conducted.
ANOVA test is used to determine whether the results obtained from
proposed algorithm are different from other competitor algorithms in
a statistically significant way. The sample size for ANOVA test is 30
with 95% confidence of interval. A p— value determine whether the
given algorithm is statistically significant or not. If p— value of the
given algorithm is less than 0.05, then the corresponding algorithm
is statistically significant. Table 12 shows the analysis of ANOVA test
on the benchmark test functions. It is observed from Table 12 that
the p— value obtained from TSA is much smaller than 0.05 for all the
benchmark test functions. Therefore, the proposed TSA is statistical
different from the other competitor algorithms.

5. TSA for engineering design problems

TSA algorithm is tested on six constrained and one unconstrained
engineering design problems. These problems are pressure vessel, speed
reducer, welded beam, tension/compression spring, 25-bar truss, rolling
element bearing, and displacement of loaded structure.

5.1. Constrained engineering design problems

This subsection describes six constrained engineering design prob-
lems to validate the performance of proposed algorithm.

5.1.1. Pressure vessel design problem

This problem was first proposed by Kannan and Kramer (1994) to
minimize the total cost of material, forming, and welding of a cylin-
drical vessel. The schematic view of pressure vessel design problem is
shown in Fig. 11. There are four design variables:

* T, (z;, thickness of the shell).

* T, (z,, thickness of the head).

* R (z3, inner radius).

* L (z4, length of the cylindrical section without considering the
head).

Apart from these, R and L are continuous variables whereas T, and T},
are integer values which are multiples of 0.0625 in. The mathematical
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Table 8
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The obtained optimal values on unimodal, multimodal, fixed-dimension multimodal, composite, and CEC-2015 benchmark test functions using
different simulation runs (i.e., 100, 500, 800, and 1000).

Iterations Functions
F Fs Fy Fiy Fy Fy CEC-1
100 8.19E-12 5.01E+02 7.29E-05 5.21E-03 —2.42E+01 4.48E+04 1.29E+08
500 4.41E-19 5.07E+02 4.22E-07 8.90E-03 —2.91E+02 4.16E+04 5.51E+07
800 3.07E-23 5.26E+02 5.11E-04 7.77E-08 —3.10E+02 3.91E+04 4.00E+05
1000 5.10E-31 4.00E+00 2.19E-17 7.08E-12 —-3.42E+00 9.75E+01 4.40E+02
Table 9

The obtained optimal values on unimodal, multimodal, fixed-dimension multimodal, composite, and CEC-2015 benchmark test
functions where number of iterations is fixed as 1000. The number of search agents are varied from 30 to 100.

Search agents Functions
F Fs Fy Fiy Fas Fy CEC -1
30 5.51E-10 5.11E+00 5.11E-02 5.26E-02 —2.51E+00 1.30E+02 2.66E+06
50 5.42E-15 5.11E+02 3.11E-02 9.10E-01 —2.81E+00 4.20E+02 1.20E+05
80 7.27E-30 4.00E+00 3.20E-09 5.15E-04 —4.49E+00 4.12E+01 1.57E+03
100 5.91E-13 5.40E+00 8.10E-01 6.00E—02 —3.12E+00 2.86E+03 2.75E+06
Table 10

The obtained optimal values on unimodal, multimodal, fixed-dimension multimodal, composite, and CEC-2015 benchmark test
functions where number of iterations and search agents are fixed as 1000 and 80, respectively. The parameter P,,, is varied

from [1, 2, 3, 4].

P, Functions

F Fs Fy Fiy F Fy CEC-1
1 1.10E-31 5.00E+00 4.45E-07 5.01E-03 —3.50E+00 1.01E+01 8.24E+03
2 9.93E-19 9.09E+01 8.88E-02 1.70E-00 —2.11E4+00 5.00E+03 9.59E+07
3 2.11E-12 5.60E+01 2.00E-01 8.01E-01 —2.88E+00 4.45E+03 3.48E+07
4 1.52E-20 3.48E+01 8.17E-02 4.00E-01 —3.16E+00 7.97E+03 4.17E+06

Table 11

The obtained optimal values on unimodal, multimodal, fixed-dimension multimodal, composite, and CEC-2015 benchmark test functions where

number of iterations and search agents are fixed as 1000 and 80, respectively. The parameter f is fixed as 1. The parameter P,

from [1, 2, 3, 4].

is varied

P, Functions

Fy Fs Fiy Fiy Fas Fay CEC -1
1 5.46E-19 7.18E+01 4.41E-02 9.90E-00 —2.22E+00 1.70E+03 2.40E+05
2 1.71E-20 2.36E+00 1.21E-03 7.56E-01 —2.93E+00 3.17E+03 2.61E+04
3 8.15E-23 5.05E+00 7.90E-03 5.00E-01 —3.07E+00 3.81E+03 1.00E+06
4 1.17E-28 1.00E+00 2.00E-09 2.47E-02 —3.51E+00 1.99E+01 4.05E+02

formulation of this problem is described below:
Consider Z = [z| 2z, z3 241 = [T, T, R L],
Minimize f(2) = 0.6224z, 23z, + 1.77812,2% + 3.166123z, + 19.8427 25,
Subject to:
2@ = —z; +0.0193z; <0,
8 (2) = —z3 +0.00954z5 < 0,
&) =-nzizy - %nzg +1,296,000 < 0,
g4(2) =2,-240<0,
where,
1%0.0625 < z,, zy <99 x0.0625, 10.0 < z3, z, < 200.0.

€]

Table 13 shows the comparison between TSA and other competitor al-
gorithms such as EPO, SHO, GWO, PSO, MVO, SCA, GSA, and GA. TSA
obtains optimal solution at point z;_, = (0.778090, 0.383230, 40.315050,
200.00000) and its fitness value is f(z;_4) = 5870.9550. It can be clear
from table that TSA algorithm is capable to find an optimal design with
low cost.

The obtained statistical results of this problem are given in Table 14.
It can be analyzed from table that TSA achieves optimal values in
terms of best, mean, and median as compared to other algorithms. The
convergence analysis of TSA on this problem for best optimal design is
shown in Fig. 12.

5.1.2. Speed reducer design problem

The speed reducer design problem is an engineering design problem.
It has seven design variables (Gandomi and Yang, 2011) as shown
in Fig. 13. The main objective of this design problem is to mini-
mize the weight of speed reducer with subject to the following con-
straints (Mezura-Montes and Coello, 2005):

 Bending stress of the gear teeth.

« Surface stress.

» Transverse deflections of the shafts.
+ Stresses in the shafts.

There are seven design variables (z; —z;) such as face width (»), module
of teeth (m), number of teeth in the pinion (p), length of the first shaft
between bearings (/,), length of the second shaft between bearings (/,),
diameter of first (d,) shafts, and diameter of second shafts (d,). The
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Fig. 10. Effect of scalability on the performance of TSA algorithm.

mathematical formulation of this problem is described as follows:

Consider Z = [z; z, z3 z4 25 2 271 =[bm p 1| I, d; d,],
Minimize f(Z) = 0.7854z,2z3(3.3333z; + 14.9334z; — 43.0934)
— 1508z, (27 + 23) + T4777(z] + 23) + 0.7854(z4 ¢ + 2523),

Subject to:
- 27
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212523
= 397.5
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Table 12
Analysis of Variance (ANOVA) test results.
F  p— value TSA SHO GWO PSO MVO SCA GSA GA EPO
F, 4.70E-11 SHO, GWO, TSA, GWO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO,
PSO, SCA, PSO, MVO, PSO, SCA, GWO, MVO, PSO, SCA, GWO, GSA, GWO, PSO, GWO, MVO, GWO, MVO,
GSA, GA, SCA, GSA, GSA, GA, SCA, GSA, GA, EPO GA, EPO MVO, SCA, SCA, GSA, SCA, GSA,
EPO GA, EPO EPO GA, EPO GA, EPO EPO GA
F, 6.66E-20 SHO, GWO, TSA, GWO, TSA, SHO, TSA, GWO, TSA, GWO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO,
PSO, MVO, PSO, MVO, PSO, SCA, MVO, SCA, PSO, SCA, PSO, GSA, GWO, PSO, GWO, PSO, GWO, PSO,
SCA, GA, SCA, GSA, GSA, GA, GSA, GA, GSA, GA GA, EPO MVO, SCA, SCA, EPO MVO, SCA,
EPO GA, EPO EPO EPO GA, EPO GSA
F; 1.50E-46 SHO, GWO, TSA, GWO, TSA, SHO, TSA, SHO, TSA, GWO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO,
PSO, SCA, PSO, SCA, MVO, SCA, GWO, MVO, PSO, SCA, MVO, GA, GWO, PSO, GWO, PSO, PSO, MVO,
GSA, GA, GSA, GA GSA, GA, SCA, GSA, GSA, GA, EPO MVO, SCA, MVO, SCA, SCA, GA
EPO EPO GA, EPO EPO EPO GSA, EPO
F, 8.82E-80 SHO, GWO, TSA, GWO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO,
PSO, MVO, PSO, MVO, PSO, MVO, GWO, SCA, GWO, SCA, GWO, GSA, GWO, PSO, GWO, PSO, GWO, MVO,
SCA, GSA, SCA, GSA, SCA, GSA, GSA, GA, GSA, GA, GA, EPO MVO, SCA, MVO, SCA, SCA, GSA,
GA, EPO GA, EPO GA, EPO EPO EPO GA, EPO GSA, EPO GA
Fs 2.88E-11 SHO, GWO, TSA, PSO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, GWO, TSA, SHO,
PSO, MVO, MVO, SCA, PSO, MVO, GWO, MVO, GWO, SCA, GWO, PSO, GWO, PSO, PSO, MVO, GWO, PSO,
SCA, GSA, GSA, GA, SCA, GSA, SCA, GSA, GSA GSA, GA, MVO, SCA, SCA, GSA, MVO GSA,
GA, EPO EPO GA, EPO GA, EPO EPO GA, EPO EPO GA
Fg 9.70E-17 SHO, GWO, TSA, GWO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO,
PSO, MVO, PSO, MVO, PSO, MVO, MVO, SCA, PSO, GSA, MVO, GSA, PSO, SCA, PSO, SCA, GWO, PSO,
SCA, GSA, SCA, GA, SCA, GSA, GSA, GA, GA, EPO GA, EPO GA, EPO GSA, EPO MVO, GSA,
GA, EPO EPO GA, EPO EPO GA
F, 6.16E-65 SHO, GWO, TSA, GWO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO,
PSO, MVO, PSO, MVO, PSO, MVO, MVO, SCA, PSO, SCA, GWO, MVO, GWO, PSO, GWO, PSO, GWO, PSO,
SCA, GSA SCA, GSA, SCA, GA, GSA, GA, GSA, GA, GSA MVO, SCA, MVO, SCA, SCA, GSA,
GA, EPO EPO EPO EPO GA, EPO GSA GA
Fy  3.53E-11 SHO, GWO, TSA, GWO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO,
MVO, SCA, MVO, SCA, PSO, MVO, MVO, SCA, PSO, GSA, GWO, PSO, PSO, SCA, GWO, MVO, PSO, MVO,
GA, EPO GSA, EPO SCA, GA, GSA, GA GA, EPO GSA, EPO GA, EPO SCA, GSA, SCA
EPO EPO
Fy, 2.31E-24 SHO, GWO, TSA, GWO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO,
PSO, MVO, MVO, GSA, PSO, MVO, SCA, GSA, PSO, SCA, PSO, GSA, PSO, MVO, GWO, PSO, GWO, PSO,
SCA, GSA, GA, EPO SCA, GSA, GA, EPO GSA, GA, GA, EPO GA, EPO MVO, SCA, SCA, GSA,
GA, EPO GA, EPO EPO GSA, EPO GA
F,, 6.11E-66 SHO, GWO, TSA, GWO, TSA, SHO, TSA, SHO, TSA, GWO, TSA, SHO, TSA, GWO, TSA, SHO, TSA, SHO,
PSO, MVO, PSO, SCA, PSO, MVO, GWO, GSA PSO, SCA, GWO, MVO, PSO, MVO, GWO, SCA GWO, PSO,
SCA, GSA, GSA, GA, SCA, GSA, GSA, GA, GA, EPO SCA, GA, MVO, SCA,
GA, EPO EPO GA, EPO EPO EPO GSA, GA
F;; 5.21E-97 SHO, GWO, TSA, GWO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO,
PSO, MVO, PSO, MVO, MVO, SCA, GWO, MVO, PSO, GSA, GWO, PSO, GWO, MVO, GWO, PSO, GWO, PSO,
SCA, GSA, SCA, GSA, GSA, GA, SCA, GSA, GA, EPO MVO, GSA, SCA, GA, MVO, SCA, MVO, GSA,
EPO GA, EPO EPO GA, EPO EPO EPO EPO GA
F, 3.98E-71 SHO, GWO, TSA, GWO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO,
PSO, MVO, PSO, SCA, MVO, SCA, GWO, MVO, GWO, SCA, GWO, GSA, GWO, MVO, PSO, MVO, GWO, PSO,
SCA, GSA, GSA, GA, GSA, GA, GSA, GA, GSA, GA, GA, EPO SCA, GA, SCA, GSA, MVO, SCA,
GA, EPO EPO EPO EPO EPO EPO EPO GA
F;; 3.60E-16 SHO, GWO, TSA, GWO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO,
PSO, MVO, PSO, MVO, PSO, MVO, SCA, GSA, PSO, SCA, GWO, PSO, GWO, PSO, PSO, MVO, PSO, MVO,
SCA, GSA, SCA, GA, SCA, GSA, GA, EPO GSA, GA, GSA, GA, MVO, SCA, GSA, EPO SCA, GA
GA, EPO EPO GA, EPO EPO EPO GA, EPO
F,, 5.24E-57 SHO, GWO, TSA, GWO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, GWO, TSA, SHO, TSA, SHO,
PSO, MVO, PSO, MVO, PSO, SCA, MVO, SCA, PSO, GSA, GWO, GSA, PSO, SCA, GWO, PSO, GWO, MVO,
SCA, GSA, SCA, GSA, GSA GSA, GA, GA, EPO GA, EPO GA, EPO MVO, GSA, SCA
EPO GA, EPO EPO EPO
F;5 4.19E-17 SHO, GWO, TSA, GWO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO,
PSO, MVO, PSO, MVO, PSO, SCA, MVO, SCA, GWO, SCA, GWO, PSO, PSO, SCA, GWO, MVO, GWO, PSO,
SCA, GSA, GSA, EPO GSA, GA, GSA, GA, GSA MVO, GA, GA, EPO SCA, GSA MVO
GA, EPO EPO EPO EPO
F, 4.21E-46 SHO, GWO, TSA, GWO, TSA, SHO, TSA, SHO, TSA, GWO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO,
PSO, MVO, MVO, GSA, PSO, MVO, GWO, MVO, PSO, SCA, GWO, GSA GWO, PSO, GWO, MVO, GWO, MVO,
SCA, GSA, GA, EPO SCA, GSA, SCA, GSA, GSA, GA, MVO, SCA SCA, GSA, SCA, GA
GA, EPO GA, EPO GA, EPO EPO EPO
Fj; 1.11E-59 SHO, GWO, TSA, GWO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO,
PSO, MVO, PSO, MVO, PSO, MVO, GWO, SCA, PSO, SCA, PSO, GSA, GWO, SCA, GWO, MVO, GWO, MVO,
SCA, GSA, SCA, GSA, GSA, GA, GSA, GA, GA, EPO GA, EPO GA, EPO SCA, GSA, SCA, GSA,
GA, EPO GA, EPO EPO EPO EPO GA

17

(continued on next page)



S. Kaur, L.K. Awasthi, A.L. Sangal et al. Engineering Applications of Artificial Intelligence 90 (2020) 103541

Table 12 (continued).

F  p—value TSA SHO GWO PSO MVO SCA GSA GA EPO
F, 7.35E-06 SHO, GWO, TSA, GWO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO,
PSO, MVO, PSO, MVO, MVO, SCA, GSA, GA PSO, SCA, GWO, PSO, GWO, PSO, PSO, MVO, GWO, PSO,
GSA, GA, SCA, GA, GSA, GA, GSA, EPO GSA, GA, MVO SCA, EPO MVO, SCA,
EPO EPO EPO EPO GSA, GA
F, 5.41E-52 SHO, GWO, TSA, GWO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, GWO,
PSO, MVO, PSO, SCA, PSO, MVO, GWO, SCA, PSO, SCA, PSO, MVO, GWO, PSO, PSO, SCA PSO, MVO,
SCA, GSA, GSA, GA, SCA, GA, GSA, GA, GA, EPO GA, EPO MVO, SCA, SCA, GSA,
GA, EPO EPO EPO EPO EPO GA
Fy 650E-11 SHO, GWO, TSA, GWO, TSA, PSO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO,
PSO, MVO, PSO, MVO, MVO, SCA, GWO, MVO,  GWO, PSO, PSO, GSA GWO, MVO,  PSO, MVO, GWO, PSO,
SCA, GSA SCA, GSA GSA, SCA, GSA, SCA, GSA, SCA, GA, GSA, EPO MVO, SCA,
GA, EPO GA, EPO EPO GSA, GA
F, 5.10E-03 SHO, GWO, TSA, GWO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO,
PSO, MVO, PSO, MVO, PSO, MVO, GWO, MVO,  GWO, PSO, GWO, PSO, PSO, SCA GWO, PSO, GWO, PSO,
SCA, GSA, GSA, GA, GSA, GA, SCA SCA, GSA, MVO, GSA, MVO, SCA, MVO, SCA,
GA, EPO EPO EPO GA, EPO GA, EPO GSA, EPO GSA, GA
Fy, 2.10E-25 SHO, GWO, TSA, GWO, TSA, SHO, TSA, MVO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, GWO, TSA, SHO,
PSO, MVO, PSO, MVO, PSO, MVO, SCA, GA, GWO, PSO, PSO, GSA, GWO, PSO, PSO, SCA, PSO, MVO,
SCA, GSA, GSA, GA, SCA, GSA, EPO SCA, GSA, GA, EPO MVO, SCA, GSA, EPO SCA, GSA,
GA, EPO EPO GA, EPO GA, EPO GA, EPO GA
Fyy 3.75E-42 SHO, GWO, TSA, GWO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO,
PSO, MVO, MVO, SCA, PSO, MVO, GWO, MVO,  PSO, GSA, GWO, PSO, MVO, SCA, GWO, MVO, GWO, PSO,
SCA, GSA, GSA, EPO SCA, GSA, SCA, GSA, GA, EPO MVO, GSA, GA, EPO SCA, GSA MVO, SCA,
GA, EPO GA, EPO GA, EPO GA GSA, GA
F,, 152E-43 SHO, GWO, TSA, GWO, TSA, SHO, GWO, MVO,  TSA, GWO, TSA, SHO, SHO, GWO, TSA, SHO, TSA, SHO,
PSO, MVO, PSO, MVO, MVO, GSA, SCA, GSA, PSO, SCA, GWO, PSO, PSO, MVO, PSO, MVO, GWO, PSO,
SCA, GSA, SCA, GSA, GA, EPO GA, EPO GSA, GA GSA, GA, SCA, EPO SCA, GSA, MVO, SCA,
GA, EPO GA EPO EPO GSA, GA
Fs 3.01E-02 SHO, GWO, TSA, GWO, TSA, SHO, TSA, SHO, TSA, GWO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO,
PSO, MVO, MVO, SCA, PSO, MVO, GWO, MVO,  SCA, GSA, GWO, PSO, GWO, PSO, PSO, SCA, PSO, SCA,
SCA, GSA, GSA, GA SCA, GA, SCA, GSA, EPO GSA, GA, MVO, SCA GSA, EPO GSA, GA
GA, EPO EPO EPO EPO
F), 4.78E-30 SHO, GWO, TSA, PSO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, PSO, TSA, SHO, TSA, SHO,
PSO, MVO, SCA, GSA, PSO, MVO, MVO, SCA, GWO, PSO, GWO, PSO, GA, EPO GWO, PSO, GWO, PSO,
SCA, GSA, GA, EPO SCA GSA, GA, SCA, GSA, MVO, GSA, MVO, SCA, MVO, SCA,
GA EPO GA, EPO GA, EPO GSA, EPO GSA
F,, 9.15E-02 SHO, GWO, TSA, GWO, TSA, SHO, TSA, GWO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO,
PSO, MVO, PSO, MVO, PSO, MVO, MVO, GSA, PSO, SCA, MVO, GSA, GWO, PSO, GWO, MVO, GWO, PSO,
SCA, GSA, SCA, GA, SCA, GSA, GA, EPO GSA, GA, GA, EPO SCA, GA, SCA, GSA, MVO, SCA,
GA, EPO EPO GA, EPO EPO EPO EPO GSA
Fys 2.31E-92 SHO, GWO, TSA, MVO, TSA, PSO, TSA, SHO, TSA, SHO, TSA, GWO, TSA, GWO, TSA, SHO, TSA, SHO,
PSO, MVO, GSA, GA, MVO, SCA, GWO, MVO,  PSO, GSA, PSO, MVO, PSO, MVO, GWO, MVO, GWO, PSO,
SCA, GSA, EPO GSA, EPO GSA, GA, GA, EPO GA SCA, GA, SCA, GSA, MVO, SCA,
EPO EPO EPO EPO GSA, GA
F 4.16E-06 SHO, GWO, TSA, GWO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO, TSA, SHO,
MVO, SCA, PSO, MVO, MVO, GSA GWO, MVO,  GWO, PSO, MVO, GSA, GWO, PSO, PSO, MVO, PSO, MVO,
GSA, GA, SCA, GSA, SCA, GSA, SCA, GSA, GA, EPO MVO, SCA, SCA, GSA GSA, GA
EPO GA, EPO GA, EPO GA, EPO GA, EPO
Table 13 Table 14
Comparison of best solution obtained from different algorithms for pressure vessel Statistical results obtained from different algorithms for pressure vessel design problem.
design problem. Algorithms  Best Mean Worst Std. Dev. Median
Algorithms  Optimum variables Optimum cost TSA 5870.9550  5880.5240  5882.6580  009.125  5875.9685
T, T, R L EPO 5880.0700  5884.1401  5891.3099  024.341  5883.5153
TSA 0778090 0.383230 40315050  200.00000 5870.9550 SHO 5885.5773  5887.4441  5892.3207  002.893  5886.2282
PO 0778099 0383241 40.315121  200.00000 £880.0700 GWO 5880.3689  5891.5247  5894.6238  013.910  5890.6497
SHO 0.778210 0.384889 40.315040  200.00000 5885.5773 PSO 5891.3876  6531.5032 73945879 534119  6416.1138
GWO 0.779035 0.384660 40.327793 199.65029 5889.3689 MVo 6011.5148 ~ 6477.3050 72509170  327.007  6397.4805
PSO 0778961 0.384683 40.320913  200.00000 5891.3879 SCA 6137.3724 = 63267606  6512.3541  126.609  6318.3179
MVO 0845710  0.418564 43816270 15638164 0115148 GSA 11550.2976 23342.2009 33226.2526 5790.625 24010.0415
SCA 0.817577 0.417932 4174939  183.57270 6137.3724 GA 5890.3279  6264.0053 70057500  496.128  6112.6899
GSA 1.085800 0.949614 49.345231  169.48741 11550.2976
GA 0752362 0.399540 40.452514 198.00268 5890.3279
o 15z+19
810(z2)= —— - 1<0,
Z4
1.1z, + 1.9
2 - 2% H=—T""_1<0
Z)y=—=-1<0, g1(@ = =0,
g:(2) 20 = 25
o 5z where
gD =—2-1<0, ?
“ 26<1z, <36, 07<2,<08, 17<z, <28, 7.3<z, <83,
. 1
zZ)=——-1<0,
89(2) 122, 73<25<83,29<24<39,50<z;,<55.

18
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Fig. 11. Schematic view of pressure vessel design problem.
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Fig. 12. Convergence analysis of TSA for pressure vessel design problem.
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Fig. 13. Schematic view of speed reducer design problem.

Table 15 reveals the obtained optimal solutions by different algorithms
on this design problem. The proposed TSA algorithm obtains optimal
solution at point z,_; = (3.50120,0.7,17,7.3,7.8,3.33410, 5.26530) with
corresponding fitness value as f(z;_;) = 2990.9580. The statistical
results of TSA and other optimization algorithms are tabulated in
Table 16.

The results show that TSA is superior than other metaheuristic
optimization algorithms. Fig. 14 shows the convergence behavior of the
proposed TSA on speed reducer design problem.

5.1.3. Welded beam design problem

The objective of this optimization problem is to minimize the fab-
rication cost of welded beam as shown in Fig. 15. The optimization
constraints of welded beam are shear stress (z), bending stress (6) in
the beam, buckling load (P.) on the bar, and end deflection (§) of the
beam. There are four design variables (z; — z,) of this problem which
are described as:

* h (z,, thickness of weld)
* | (z,, length of the clamped bar)
* 1 (z3, height of the bar)

19
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Fig. 14. Convergence analysis of the proposed TSA algorithm for speed reducer design
problem.

* b (z4, thickness of the bar)

The mathematical formulation is described as follows:
Consider Z = [z| 2z, z3 z4] =[h [ t b],

Minimize /(2) = 1.1047123z, + 0.04811232,(14.0 + z,),
Subject to:

g,(2) = () — 13,600 < 0,

gz(f) = a(f) —30,000 <0, 10
g3(2) =6(2)-025<0,

84(3)=2; =24 <0,

g5(Z) = 6000 — P,(Z) <0,

g(3) =0.125-z, <0,

g7(3) = 11047122 + 0.04811232,(14.0 + z,) = 5.0 < 0,

where,

0.1<z, 0.1 <z,, 23 <10.0, z4 <20,

() = \/ (2 + ("2 + (7' T") V0252 + (h + 1),
;6000 . 504,000 . 65856000
T = —, o(z) = N 5(2) =

V2hi 2b (30 x 105)b13

600014 + 0.50)1/0.25(1% + (h + 1)?)

© T 20070712 + 0.25(h + 2]

P.(Z) = 64,746.022(1 — 0.02823461)th>.

The comparison results between proposed TSA and other metaheuristics

is given in Table 17. The proposed TSA obtains optimal solution at

point z;_, = (0.203290, 3.471140,9.035100, 0.201150) with corresponding

fitness value equal to f(z;_4) = 1.721020. Table 18 shows the statistical

comparison of TSA and other competitor algorithms. TSA reveals the

superiority than other algorithms in terms of best, mean, and median.
Fig. 16 shows the convergence behavior of best optimal solution

obtained from the proposed TSA for welded beam design problem.

5.1.4. Tension/compression spring design problem

The objective of this engineering design problem is to minimize the
tension/compression spring weight (see Fig. 17). The constraints are
described as follows:

« Shear stress.
» Surge frequency.
» Minimum deflection.

There are three design variables: wire diameter (d), mean coil
diameter (D), and the number of active coils (P). The mathematical
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Table 15

Comparison of best solution obtained from different algorithms for speed reducer design problem.
Algorithms Optimum variables Optimum cost

b m P N I, d, d,

TSA 3.50120 0.7 17 7.3 7.8 3.33410 5.26530 2990.9580
EPO 3.50123 0.7 17 7.3 7.8 3.33421 5.26536 2994.2472
SHO 3.50159 0.7 17 7.3 7.8 3.35127 5.28874 2998.5507
GWO 3.506690 0.7 17 7.380933 7.815726 3.357847 5.286768 3001.288
PSO 3.500019 0.7 17 8.3 7.8 3.352412 5.286715 3005.763
MVO 3.508502 0.7 17 7.392843 7.816034 3.358073 5.286777 3002.928
SCA 3.508755 0.7 17 7.3 7.8 3.461020 5.289213 3030.563
GSA 3.600000 0.7 17 8.3 7.8 3.369658 5.289224 3051.120
GA 3.510253 0.7 17 8.35 7.8 3.362201 5.287723 3067.561

Table 16

Statistical results obtained from different algorithms for speed reducer design problem.
Algorithms Best Mean Worst Std. Dev. Median
TSA 2990.9580 2993.010 2998.425 1.22408 2992.018
EPO 2994.2472 2997.482 2999.092 1.78091 2996.318
SHO 2998.5507 2999.640 3003.889 1.93193 2999.187
GWO 3001.288 3005.845 3008.752 5.83794 3004.519
PSO 3005.763 3105.252 3211.174 79.6381 3105.252
MVO 3002.928 3028.841 3060.958 13.0186 3027.031
SCA 3030.563 3065.917 3104.779 18.0742 3065.609
GSA 3051.120 3170.334 3363.873 92.5726 3156.752
GA 3067.561 3186.523 3313.199 17.1186 3198.187

formulation of this problem is described below:

Consider Z = [z| z, z3]=[d D P],

Minimize f () = (23 + 2)222%’ 11 Fig. 15. Schematic view of welded beam problem.
Subject to: Objective space
3
81(2) —1- 2,73 < 35 Welded Beam Design
71785z
el
. 4z§ —2Zz1Zy 1 o 4 1
£(2) = s T 2 = g
12566(7,27;1 - zl) 5108z] 3
o
- 140.45z ®
&(@)=1-—F—<0, S 25 1
2323 @
+ @
a®=21"2_1<0, 8
15 ) 1
where,
0.05 <z, <20, 025 <z, < 1.3, 2.0 < z3 < 15.0. | , , ]
Table 19 shows the comparison between proposed TSA and other 0 200 400 600 800 1000
competitor algorithms in terms of design variables values and objec- Iterations
tive values. TSA generated best solution at design variables z;_; = . ) )
(0.051080, 0.342890, 12.0890) with an objective function value of f(z1.3) Fig. 16. Convergence analysis of TSA for welded beam design problem.
= 0.012655520. The results show that TSA is better than the other
competitor algorithms on this design problem. The statistical results of P P

tension/compression spring design problem for the reported algorithms - — | D
are also compared and given in Table 20. It is analyzed from Table 20
that TSA provides better statistical results in terms of best, mean, and

median. 4'{ }'7 d

Fig. 18 shows the convergence analysis for best optimal design
obtained from the proposed TSA. Fig. 17. Schematic view of tension/compression spring problem.

5.1.5. 25-bar truss design problem

The truss design problem is a popular large-scale optimization * Group 5: Ay, A3
problem (Kaveh and Talatahari, 2009a,b) (see Fig. 19). There are 10 * Group 6: A4, A5, A7
nodes and 25 bars cross-sectional members. These are grouped into « Group 7: Ajg, Ajg, Agg, Ay
eight categories. « Group 8: Ay, Ay, Ay, Aos
* Group 1: 4, The other variables which affects on this problem are as follows:
* Group 2: A,, A3, Ay, As
* Group 3: Ag, A7, Ag, Ag + p=0.0272 N/cm? (0.1 1b/in.?)
» Group 4: Ay, Ay, + E = 68947 MPa (10000 Ksi)

20
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Table 17

Engineering Applications of Artificial Intelligence 90 (2020) 103541

Comparison of best solution obtained from different algorithms for welded beam design problem.

Algorithms Optimum variables Optimum cost
h 1 t b
TSA 0.203290 3.471140 9.035100 0.201150 1.721020
EPO 0.205411 3.472341 9.035215 0.201153 1.723589
SHO 0.205563 3.474846 9.035799 0.205811 1.725661
GWO 0.205678 3.475403 9.036964 0.206229 1.726995
PSO 0.197411 3.315061 10.00000 0.201395 1.820395
MVO 0.205611 3.472103 9.040931 0.205709 1.725472
SCA 0.204695 3.536291 9.004290 0.210025 1.759173
GSA 0.147098 5.490744 10.00000 0.217725 2.172858
GA 0.164171 4.032541 10.00000 0.223647 1.873971
Table 18 5.1.6. Rolling element bearing design problem
Statistical results obtained from different algorithms for welded beam design problem. The objective of this design problem is to maximize the dynamic
Algorithms  Best Mean Worst Std. Dev.  Median load carrying capacity of a rolling element bearing as shown in Fig. 21.
TSA 1721020 1725021  1.727205  0.003316  1.724224 There are 10 decision variables such as pitch diameter (D,,), ball
EPO 1.723589 1.725124 1727211 0.004325 1.724399 diameter (D;), number of balls (Z), inner (f;) and outer (f,) raceway
SHO 1.725661 1.725828 1.726064 0.000287  1.725787 curvature coefficients, K, Kpnaes € ¢ and ¢ (see Fig. 21). The
GWo 1.726995 1.727128 1727564 0.001157 1.727087 mathematical justification of this problem is described below:
PSO 1.820395 2.230310 3.048231  0.324525 2.244663 J p :
MVO 1.725472 1.729680 1.741651 0.004866 1.727420 f.72/3pl8 if D<254mm
SCA 1.759173 1.817657 1.873408 0.027543 1.820128 Maximize C,; = ¢ b 273yl ) -
GSA 2172858 2544239  3.003657  0.255859  2.495114 C; =3.647f.Z°°D;*,  if D>254 mm
GA 1.873971 2.119240 2.320125 0.034820 2.097048 Subject to:
- $o
81D =——"T"—F—-Z+10,
Table 19 1 2sin~1(D,/D,,)

Comparison of best solution obtained from different algorithms for tension/compression
spring design problem.

Algorithms Optimum variables Optimum cost
d D P
TSA 0.051080 0.342890 12.0890 0.012655520
EPO 0.051087 0.342908 12.0898 0.012656987
SHO 0.051144 0.343751 12.0955 0.012674000
GWO 0.050178 0.341541 12.07349 0.012678321
PSO 0.05000 0.310414 15.0000 0.013192580
MVO 0.05000 0.315956 14.22623 0.012816930
SCA 0.050780 0.334779 12.72269 0.012709667
GSA 0.05000 0.317312 14.22867 0.012873881
GA 0.05010 0.310111 14.0000 0.013036251

Objective space

0.04

Tension/compression Spring

0.035

0.03

0.025

0.02

Best score obtained

0.015

0.01

10° 10" 102 108

Iterations

Fig. 18. Convergence analysis of TSA for tension/compression spring design problem.

+ Displacement limitation = 0.35 in.

» Maximum displacement = 0.3504 in.

» Design variable set 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0,
1.1,1.2,1.3,14,1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2,2.3,2.4,2.6,2.8,3.0,
32, 3.4}

Table 21 shows the member stress limitations for this problem.

21

82(2) =2D, = Kppin(D = d) 20,
83(2) = Kppor (D —d) = 2D, > 0,
g4(2)=¢(B, - D, <0,

g5(2) =D,, —0.5(D +d) >0,

8(2) =0.5+e)(D+d)-D,, 20,
2,(Z) =0.5(D - D,, — D;) — €D, > 0,
g3(z) = f; 2 0.515,

g(2) = f, 2 0.515,

where,

| 1.72 f(2f 1) 0.41 10/37-0.3
= nt'd JittJo 7 )
fe _37.91[1+ {1.04<1+y) (fo(zfi_1)> } ]
03 E 0.41
. | 7a - 2f;
(L+7)1/3 2fi -1

x=[{(D-d)/2=3(T /M +{D/2-T/4-Dy)* - {d/2+T/4}*]
y=2{(D-d)/2-3(T/H}{D/2~T/4- D,}

¢, =27 —2cos™! <E>
y

12)

D, T Ty
y:D_m, f,.=D—b, f0=D—h, T=D-d-2D,
D=160, d=90, B, =30, r,=r,=11.033
0.5(D+d) < D,, <0.6(D+d), 0.15(D-d)<D,
<045(D-d), 4<Z <50, 0515< f; and f,<0.6,
04 < Kppin <05, 0.6 < Kppu <07, 03<e<04,
002<e<01, 06<¢<0.85.

Table 24 presents the performance of best obtained optimal solution
between proposed and other algorithms. TSA obtains the optimal solu-
tion at z;_;g = (125,21.41750, 10.94109,0.510,0.515,0.4,0.7,0.3,0.02, 0.6)
with corresponding fitness value as f(z;_;¢) = 85070.085. The statistical
results for rolling element bearing design problem are tabulated in Ta-
ble 25. The results reveal that TSA generates the best optimal solution
with continuous improvements.

Table 22 shows the loading conditions for 25-bar truss problem. The
comparison of best obtained solutions is tabulated in Table 23. It is
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Table 20

Statistical results obtained from different algorithms for tension/compression spring design problem.

Algorithms Best Mean Worst Std. Dev. Median

TSA 0.012655520 0.012677560 0.012667890 0.001010 0.012675990
EPO 0.012656987 0.012678903 0.012667902 0.001021 0.012676002
SHO 0.012674000 0.012684106 0.012715185 0.000027 0.012687293
GWO 0.012678321 0.012697116 0.012720757 0.000041 0.012699686
PSO 0.013192580 0.014817181 0.017862507 0.002272 0.013192580
MVO 0.012816930 0.014464372 0.017839737 0.001622 0.014021237
SCA 0.012709667 0.012839637 0.012998448 0.000078 0.012844664
GSA 0.012873881 0.013438871 0.014211731 0.000287 0.013367888
GA 0.013036251 0.014036254 0.016251423 0.002073 0.013002365

Table 21
Member stress limitations for 25-bar truss design problem.

Element Compressive stress Tensile stress
group limitations Ksi (MPa) limitations Ksi (MPa)
Group 1 35.092 (241.96) 40.0 (275.80)
Group 2 11.590 (79.913) 40.0 (275.80)
Group 3 17.305 (119.31) 40.0 (275.80)
Group 4 35.092 (241.96) 40.0 (275.80)
Group 5 35.092 (241.96) 40.0 (275.80)
Group 6 6.759 (46.603) 40.0 (275.80)
Group 7 6.959 (47.982) 40.0 (275.80)
Group 8 11.082 (76.410) 40.0 (275.80)

analyzed that the proposed TSA is better than other algorithms in terms
of best, average, and standard deviation. TSA converges very efficiently
towards optimal design of this problem as shown in Fig. 20.

Fig. 22 reveals the convergence behavior of TSA algorithm and it
can be seen that TSA is able to achieve best optimal design.

5.2. Unconstrained engineering problem

This subsection describes the displacement of loaded structure de-
sign problem to minimize the potential energy.

5.2.1. Displacement of loaded structure design problem

A displacement is a vector which defines the shortest distance be-
tween the initial and final position of a given point. The main objective
of this unconstrained problem is to minimize the potential energy for
reducing the excess load of structure. The loaded structure that should

have minimum potential energy (f(Z)) is depicted in Fig. 23. The
problem can be justified as follows:

f(@= Minimize, . =

where,

1 s, 1
T = EK]MI + 5
K, =8N/cm, K, =1N/cm, F, =5N,F, =5N

wp=1/22+10-22) =10, uy = /2 +(10+23) - 10.

Table 26 shows the best comparison of optimal solutions obtained
from the proposed TSA and other algorithms. TSA achieves best op-
timum cost at 7 = 167.2635. It can be analyzed that TSA is able
to minimize the potential energy for loaded structure problem. The
statistical results are also given in Table 27. It can be seen that TSA
are better than the other metaheuristics in terms of best, mean, and
median. Fig. 24 shows the convergence behavior of best optimal design
obtained from TSA algorithm.

Overall, TSA is an efficient and effective optimizer for solving both
constrained and unconstrained engineering design problems.

Wi — Fozy — Fyz, 13)

6. Conclusion and future scope

In this paper, we presented a bio-inspired based bio-inspired meta-
heuristic algorithm called Tunicate Swarm Algorithm (TSA). The fun-
damental inspiration of this algorithm includes the jet propulsion and
swarm behaviors of tunicate. The proposed algorithm is experimented
on a set of seventy-four benchmark test functions belonging to classical,
CEC-2015 and CEC-2017 test suite. The statistical results proved the

Fig. 19. Schematic view of 25-bar truss problem.
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Table 22
Two loading conditions for the 25-bar truss design problem.
Node Case 1 Case 2
P.Kips(kN) P,Kips(kN) P_Kips(kN) P.Kips(kN) P,Kips(kN) P.Kips(kN)
1 0.0 20.0 (89) —-5.0 (22.25) 1.0 (4.45) 10.0 (44.5) —-5.0 (22.25)
2 0.0 —20.0 (89) —-5.0 (22.25) 0.0 10.0 (44.5) —-5.0 (22.25)
3 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0
6 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0
Table 23

Statistical results obtained from different algorithms for 25-bar truss design problem.

Groups TSA ACO (Bichon, PSO (Schutte CSS (Kaveh and BB-BC (Kaveh and
2004) and Groenwold, Talatahari, Talatahari, 2009¢)
2003) 2010)
Al 0.01 0.01 0.01 0.01 0.01
A2 - A5 1.840 2.042 2.052 2.003 1.993
A6 — A9 3.001 3.001 3.001 3.007 3.056
A10 - All 0.01 0.01 0.01 0.01 0.01
Al2 - Al13 0.01 0.01 0.01 0.01 0.01
Al4 — A17 0.651 0.684 0.684 0.687 0.665
A18 — A21 1.620 1.625 1.616 1.655 1.642
A22 — A25 2.67 2.672 2.673 2.66 2.679
Best weight 544.80 545.03 545.21 545.10 545.16
Average weight 545.10 545.74 546.84 545.58 545.66
Std. dev. 0.391 0.94 1.478 0.412 0.491
Table 24
Comparison of best solution obtained from different algorithms for rolling element bearing design problem.
Algorithms Optimum variables Opt. cost
D, D, z Ji fo K pin K pmax £ e ¢
TSA 125 21.41750 10.94100 0.510 0.515 0.4 0.7 0.3 0.02 0.6 85070.080
EPO 125 21.41890 10.94113 0.515 0.515 0.4 0.7 0.3 0.02 0.6 85067.983
SHO 125 21.40732 10.93268 0.515 0.515 0.4 0.7 0.3 0.02 0.6 85054.532
GWO 125.6199 21.35129 10.98781 0.515 0.515 0.5 0.68807 0.300151 0.03254 0.62701 84807.111
PSO 125 20.75388 11.17342 0.515 0.515000 0.5 0.61503 0.300000 0.05161 0.60000 81691.202
MVO 125.6002 21.32250 10.97338 0.515 0.515000 0.5 0.68782 0.301348 0.03617 0.61061 84 491.266
SCA 125 21.14834 10.96928 0.515 0.515 0.5 0.7 0.3 0.02778 0.62912 83431.117
GSA 125 20.85417 11.14989 0.515 0.517746 0.5 0.61827 0.304068 0.02000 0.624638 82276.941
GA 125 20.77562 11.01247 0.515 0.515000 0.5 0.61397 0.300000 0.05004 0.610001 82773.982
Objective space B,
580 ! ! D,
25-bar Truss Desigr{
575
|
8 570 1
T [ q,
o 565
[]
% 560 1 1 )
= 555 ] b
§ 5
550 d;
545 ] X <
540 - -
100 10’ 102 10° )V\
Iterations r,

Fig. 20. Convergence analysis of TSA for 25-bar truss design problem.

effectiveness of TSA towards attaining global optimal solutions having
better convergence in comparison to its rivals.

For CEC-2015 and CEC-2017 benchmark test functions, all the com-
petitor algorithms rarely found the global optimal solutions, contrarily
the performance of TSA is found to be accurate and consistent. We
also investigated the effect of scalability and sensitivity on efficacy
of TSA and the simulation results reveal that the proposed algorithm
is less susceptible as compared to other algorithms. In addition, the

23

Fig. 21. Schematic view of rolling element bearing problem.

effectiveness and efficiency of TSA is also demonstrated by applying it
on six constrained and one unconstrained engineering design problems.
From the experimental outcomes, it can be concluded that the proposed
TSA is applicable to real-world case studies with unknown search
spaces.

This paper opens several research directions like TSA may be ex-
tended in future to solve multi-objective optimization problems. Apart
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Fig. 22. Convergence analysis of TSA for rolling element bearing design problem.

K,=8N/cm

10 cm
SN
E =5N

10 cm

K> =IN/cm

Fig. 23. Schematic view of displacement of loaded structure.

Table 25

Statistical results obtained from different algorithms for rolling element bearing design
problem.

Algorithms  Best Mean Worst Std. Dev. Median
TSA 85070.080 85044.951 86552.480 1976.21 85058.162
EPO 85067.983  85042.352 86551.599  1877.09 85056.095
SHO 85054.532 85024.858 85853.876 0186.68 85040.241
GWO 84807.111 84791.613 84517.923  0137.186 84960.147
PSO 81691.202 50435.017 32761.546 13962.150 42287.581
MVO 84491.266 84353.685 84100.834 0392.431 84 398.601
SCA 83431.117 81005.232  77992.482  1710.777 81035.109
GSA 82276.941  78002.107 71043.110  3119.904 78398.853
GA 82773.982 81198.753  80687.239  1679.367 8439.728
Table 26

Comparison of best solution
loaded structure problem.

obtained from different algorithms for displacement of

Algorithms Optimum cost ()
TSA 167.0024
EPO 168.8231
SHO 168.8889
GWO 170.3645
PSO 170.5960
MVO 169.3023
SCA 169.0032
GSA 176.3697
GA 171.3674

from this, the proposal of binary or many objective versions of TSA

could be some significant contributions as well.

24
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Table 27
Statistical results obtained from different algorithms for displacement of loaded
structure problem.

Algorithms Best Mean Worst Std. Dev. Median
TSA 167.0024 169.5302 176.1111 208.823 168.5217
EPO 168.8231 170.1309 230.9721 211.861 169.4214
SHO 168.8889 170.3659 173.6357 023.697 169.6710
GWO 170.3645 171.3694 174.3970 196.037 173.3694
PSO 170.5960 174.6354 175.3602 236.036 173.9634
MVO 169.3023 171.0034 174.3047 202.753 170.0032
SCA 169.0032 171.7530 174.4527 129.047 170.3647
GSA 176.3697 178.7521 179.5637 113.037 174.367
GA 171.3674 172.0374 174.0098 212.703 172.0097
Objective space
200
‘ Loaded Structure|
195 1
8
< 190
8
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o 185
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2 180
g
Q 175
170
165
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Fig. 24. Convergence analysis of TSA for displacement of loaded structure problem.
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Appendix. Unimodal, multimodal, and fixed-dimension

multimodal benchmark test functions
A.1. Unimodal benchmark test functions

A.1.1. Sphere model

30
Fi(2) = Z z?
i=1

-100 < z, <100, f,;, =0, Dim=30

A.1.2. Schwefel’s problem 2.22

30 30
B2 =Y 1zl + ][] 1z
i=1 i=1

-10<z <10, fp,=0, Dim=30
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Table 28

Shekel’s Foxholes function F,.
(a;,i=1,2and j=1,2,...,25)
i\Jj 1 2 3 4 5 6 25
1 -32 -16 0 16 32 -32 32
2 =32 -32 -32 -32 =32 -16 32

Table 29

Hartman function F,.
i (a,j,j=1,2,3) [ (p,,,j=1,2,3)
1 3 10 30 1 0.3689 0.1170 0.2673
2 0.1 10 35 1.2 0.4699 0.4387 0.7470
3 3 10 30 3 0.1091 0.8732 0.5547
4 0.1 10 35 3.2 0.038150 0.5743 0.8828

Table 30

Shekel Foxholes functions F,,, F,,, F,;.
i (a,. = 1,2,3,4) ¢
1 4 4 4 4 0.1
2 1 1 1 1 0.2
3 8 8 8 8 0.2
4 6 6 6 6 0.4
5 3 7 3 7 0.4
6 2 9 2 9 0.6
7 5 5 3 3 0.3
8 8 1 8 1 0.7
9 6 2 6 2 0.5
10 7 3.6 7 3.6 0.5

A.1.3. Schwefel’s problem 1.2

30 i )
Reo=Y(Xz)
=1 j=I

-100 < z; <100, f,, =0, Dim=30

A.1.4. Schwefel’s problem 2.21

Fy(z) = max;{|z;],1 <i <30}

-100 < z; £100, f,,;, =0, Dim=30

A.1.5. Generalized Rosenbrock’s function

29
Fs(z) = Z[IOO(ZH,] - 222 +(z; - DA

i=1

-30<z <30, fp,=0, Dim=30
A.1.6. Step function
30
Fy(2) = (L7 +0.5])
i=1
-100 < z; £100,  f,;, =0, Dim =30

A.1.7. Quartic function

30
Fy(z) = Z iz;l + random|[0, 1]

i=1

~128<z, <128, fnun=0, Dim=30

25
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A.2. Multimodal benchmark test functions
A.2.1. Generalized Schwefel’s problem 2.26

30

Fy(2) = Y —zsin(v/1z,])

i=1

~500 < z; <500, fpun = —12569.5, Dim =30

A.2.2. Generalized Rastrigin’s function

30
Fy(z) = Z[zi2 — 10cos(2zrz;) + 10]

i=1

—512<2 €512, fp, =0, Dim=30

A.2.3. Ackley’s function

30 30
1 > 1
Fio(z) =— 20€xp<—0.2 0 ; z; ) - exp<% g{ cos(27rz,-)> +20+e

-32<2,<32, foun =0, Dim=30

A.2.4. Generalized Griewank function

30 30
_ 1 2 Zi
Fu® = 500 gl K I,.zll (7) !

—600 < z; <600, fp, =0, Dim=30

A.2.5. Generalized Penalized functions

29
Fpp(2) = %{IOSin(ﬂxl) + 0t = D21+ 10sin (zx,4,)]
i=1
30
+(x, — 1} + Y u(z;,10,100,4)
i=1
—50 <z <50,

Foin =0,  Dim =30

29
Fi3(2) = 0.1{sin*(37z)) + Y (z; = D*[1 + sin*Brz; + D]+ (z, = 1)?
i=1
N
X [1+ sin® Qrz3)l} + ) u(z;,5,100,4)

i=1

~50<z <50, f,;,=0, Dim=30
z;+1

where, x; =1+ —
k(z; —a)" z;>a

u(z;,a,k,m) =140 —a<z<a
k(-z; —a)™ z; < —a

A.3. Fixed-dimension multimodal benchmark test functions

A.3.1. Shekel’s Foxholes function
See Table 28.

1< 1 -l
Fly(2) = <— + —)
500 /gl J+ Z,—2=1(7~i —a;)°

—65.536 < z; < 65.536, fon~ 1, Dim=2
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Table 31
Hartman function F,,.

Engineering Applications of Artificial Intelligence 90 (2020) 103541

i (a;j=12...6)

(i =1.2.....6)

10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

AW N =

1.2

3.2

0.1312  0.1696  0.5569  0.0124  0.8283 0.5886
0.2329  0.4135 0.8307  0.3736  0.1004 0.9991
0.2348  0.1415 0.3522  0.2883  0.3047 0.6650
0.4047 0.8828 0.8732  0.5743  0.1091 0.0381

Table A.1
Composite benchmark test functions.

Functions

Dim Range Smin

F,,(CF1) :
f1 f2: f35 - f1o = Sphere function

[y, @y, 05, ..., 010l = [1,1,1,...,1]

1815 Bss Bs» - Brol = [5/100,5/100,5/100, ..., 5/100]

Fys(CF2) :

f1>f2 f3s - f1o = Griewank’s Function
lay, .05, ...,0,0] = [1,1,1,...,1]
[B1: B2, B3 ... s Brol = [5/100,5/100,5/100, ...,5/100]
Fys(CF3) :

/1, f> = Ackley’s Function

f1> f2 f35 - f1o = Griewank’s Function
lay, @y, a5, ..., 0] =[1,1,1,...,1]
11,6y, By - Brol = [1, 1,1, 1]
Fy,(CF4) :

/1, f> = Ackley’s Function

f3. f4 = Rastrigin’s Function

fs. f¢ = Weierstras’s Function

f4, fs = Griewank’s Function

fo, f19 = Sphere Function

lay, .05, ...,0,0] = [1,1,1,...,1]

[B1. s, B ... s Brol = [5/32,5/32,1,1,5/0.5,5/0.5,5/100,5/100, 5/100,5/100]

Fyy(CF5)

f1, f> = Rastrigin’s Function
f3. f4 = Weierstras’s Function
fs. f¢ = Griewank’s Function
f4, fs = Ackley’s Function
fo, f19 = Sphere Function

lay, .03, ...,0;0] = [1,1,1,...,1]

10 [-5.5] 0

10 [-5,5] 0

10 [-5,5] 0

10 [-5.5] 0

10 [-5.5] 0

1By, Bas B - ol = [1/5.1/5,5/0.5,5/0.5,5/100,5/100,5/32,5/32,5/100,5/100]

Fay(CF6) :

f1, f> = Rastrigin’s Function

f3, f4 = Weierstras’s Function

fs. f¢ = Griewank’s Function

f4, fs = Ackley’s Function

fo, f19 = Sphere Function

[, @, a3, ..., )] =[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1]
By, By, B - s Brol =

10 [-5.5] 0

[0.1 % 1/5,0.2 % 1/5,0.3 % 5/0.5,0.4 % 5/0.5,0.5  5/100,0.6 * 5/100,0.7 * 5/32,0.8  5/32,0.9 % 5/100, 1 % 5/100]

A.3.2. Kowalik’s function

zl(b +b;2,)

11
Fis(z) = Z[a -

Fin & 0.0003075,

b2+bz;+z4
-5<2z; <5, Dim =4

A.3.3. Six-Hump Camel-Back function

1
Fig(z) =423 - 2.1z} + 32? +2,2) — 423 + 4z}

~5<2,<5,  foun=—10316285, Dim=2

A.3.4. Branin function

F17(z) = z—ﬂzz+§z -6 2+10 1—L cosz; + 10
IV ZA? T 421 7t 8z !
-5<z; <10, 0<z, <15 f,,,=0398 Dim=2

A.3.5. Goldstein—price function

Fig(2) = [1+ (2 + 25 + 1?19 — 14z +32% — 14z, + 62,2, + 323)]
X [30 + (2z) — 32,)* x (18 — 32z + 1227 + 48z,
- 362z, +2723)]
-2<2<2, fun=3 Dim=2

A.3.6. Hartman’s family

* Fio(@) ==X} cexp(= X)_y a;(z,=p;)) 0 < z; <1, fr = —3.86,
Dim =3
* Fy(2) ==X cexp(= Xy ay(z;=p) 0 < 2 < 1, frgy = =3.32,

Dim = 6 (see Table 29).

A.3.7. Shekel’s Foxholes function

cFy(2) = =YX - a)(X —a)T + 6171 0 < 2 < 10, fry =
—10.1532, Dim =4
*Fp(2) = =TI —a)X = a)T +¢171 0 <z 10, fy =

—10.4028, Dim =4
© F(2) = - Y0 (X —a)(X —a)T +¢17' 0 < z;, <10, £, = —10.536,
Dim = 4 (see Tables 30 and 31).
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Table A.2

IEEE CEC-2015 benchmark test functions.
No. Functions Related basic functions Dim Smin
CEC -1 Rotated Bent Cigar Function Bent Cigar Function 30 100
CEC-2 Rotated Discus Function Discus Function 30 200
CEC-3 Shifted and Rotated Weierstrass Function Weierstrass Function 30 300
CEC -4 Shifted and Rotated Schwefel’s Function Schwefel’s Function 30 400
CEC-5 Shifted and Rotated Katsuura Function Katsuura Function 30 500
CEC-6 Shifted and Rotated HappyCat Function HappyCat Function 30 600
CEC-17 Shifted and Rotated HGBat Function HGBat Function 30 700
CEC-38 Shifted and Rotated Expanded Griewank’s plus Rosenbrock’s Function Griewank’s Function 30 800

Rosenbrock’s Function

CEC-9 Shifted and Rotated Expanded Scaffer’s F6 Function Expanded Scaffer’s F6 Function 30 900
CEC-10 Hybrid Function 1 (N =3) Schwefel’s Function 30 1000

Rastrigin’s Function
High Conditioned Elliptic Function

CEC-11 Hybrid Function 2 (N =4) Griewank’s Function 30 1100
Weierstrass Function
Rosenbrock’s Function
Scaffer’s F6 Function

CEC-12 Hybrid Function 3 (N =5) Katsuura Function 30 1200
HappyCat Function
Expanded Griewank’s plus Rosenbrock’s Function
Schwefel’s Function
Ackley’s Function

CEC-13 Composition Function 1 (N =5) Rosenbrock’s Function 30 1300
High Conditioned Elliptic Function
Bent Cigar Function
Discus Function
High Conditioned Elliptic Function

CEC - 14 Composition Function 2 (N = 3) Schwefel’s Function 30 1400
Rastrigin’s Function
High Conditioned Elliptic Function

CEC-15 Composition Function 3 (N =5) HGBat Function 30 1500
Rastrigin’s Function
Schwefel’s Function
Weierstrass Function
High Conditioned Elliptic Function

A.4. Basic composite benchmark test functions yisin(ly;]'7%)
where,if |y;| <500,
A.4.1. Weierstrass function (o, — 500)2
500 — mod(y;, 500))si 500 — mod(y;,500)|) — ————
) = ( mod(y;,500))sin(+/| mod(y;, 500)[) 10000 < 30
30 20 20 where,if y; > 500,
F(z) = Z(Z[O.Skcos(2n3k(z,- + 0.5))]) -30 Z[O.Skcos(ZESk x 0.5)] . (; + 500)>
o & (mod(|y;|,500) — 500)sin(4/|mod(|y;|,500) — 500]) — 1000030
Note that the Sphere, Rastrigin’s, Griewank’s, and Ackley’s functions in where,if y; < =500
composite benchmark suite are same as above mentioned F;, Fy, Fy;,
and F;, benchmark test functions. A.5.4. Katsuura function

A.5. Basic CEC-2015 benchmark test functions ) ) 10

10 30 32 12/ z; — round (2 z,))| \ 5755 10

P = L0 ] (141 Y, ZEmromd@ely o _ 10
i=1

A.5.1. Bent Cigar function 302 = 2J 302
30 A.5.5. HappyCat function

F(z)= z? +10° Zzlz
i=2

30 1/4 30 30
F)=| Y2 =30] " +05Y 2+ 2)/30+05
A.5.2. Discus function i=1 i=1 i=1

0 A.5.6. HGBat function
F(z) = 1062% + Z z,.2
i 30 30 12 30 30
F@ =Y =Yz +05 Y 2+ Y 2)/30+05
A.5.3. Modified Schwefel’s function i=1 i=1 i=1 i=1

A.5.7. Expanded Griewank’s plus Rosenbrock’s function

30
F(z) =418.9829 x 30 — z g, ¥ =z; +4.209687462275036e + 002 F(2) = Fyo(F35(21, 22)) + Fo(F3g(20, 23)) + - + Fao(F35(230- 21))

i=1

27
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Table A.3
IEEE CEC-2017 benchmark test functions.
No. Functions Fomin
Cc-1 Shifted and Rotated Bent Cigar Function 100
c-2 Shifted and Rotated Sum of Different Power Function 200
Cc-3 Shifted and Rotated Zakharov Function 300
C-4 Shifted and Rotated Rosenbrock’s Function 400
c-5 Shifted and Rotated Rastrigin’s Function 500
Cc-6 Shifted and Rotated Expanded Scaffer’s Function 600
Cc-7 Shifted and Rotated Lunacek Bi_Rastrigin Function 700
Cc-8 Shifted and Rotated Non-Continuous Rastrigin’s Function 800
c-9 Shifted and Rotated Levy Function 900
c-10 Shifted and Rotated Schwefel’s Function 1000
Cc-11 Hybrid Function 1 (N =3) 1100
c-12 Hybrid Function 2 (N =3) 1200
C-13 Hybrid Function 3 (N =3) 1300
Cc-14 Hybrid Function 4 (N =4) 1400
Cc-15 Hybrid Function 5 (N =4) 1500
Cc-16 Hybrid Function 6 (N =4) 1600
Cc-17 Hybrid Function 6 (N =5) 1700
Cc-18 Hybrid Function 6 (N =5) 1800
c-19 Hybrid Function 6 (N =5) 1900
Cc-20 Hybrid Function 6 (N = 6) 2000
c-21 Composition Function 1 (N = 3) 2100
Cc-22 Composition Function 2 (N = 3) 2200
Cc-23 Composition Function 3 (N =4) 2300
C-24 Composition Function 4 (N =4) 2400
Cc-25 Composition Function 5 (N =5) 2500
C-26 Composition Function 6 (N = 5) 2600
Cc-27 Composition Function 7 (N = 6) 2700
Cc-28 Composition Function 8 (N = 6) 2800
Cc-29 Composition Function 9 (N = 3) 2900
C-30 Composition Function 10 (N = 3) 3000

A.5.8. Expanded Scaffer’s F6 function
Scaffer’s F6 Function:

(sin? (V22 + x2) = 0.5)

(1 +0.001(z2 + x2))2

g(z,x) =05+

F(z) = g(z1, 20) + 8(z5, 23) + -+ + 8(239, 21)

A.5.9. High conditioned Elliptic function

E el B
F(z)= Y (10930 -1z

i=1
Note that the Weierstrass, Rosenbrock’s, Griewank’s, Rastrigin’s, and
Ackley’s functions in CEC-2015 benchmark test suite are same as above
mentioned Weierstrass, Fs, F\;, Fy, and F;, benchmark test functions.

A.6. Composite benchmark functions

The detailed description of six well-known composite benchmark
test functions (F,4 — F,9) are mentioned in Table A.1.

A.7. CEC-2015 benchmark test functions

The detailed description of fifteen well-known CEC-2015 bench-
mark test functions (CEC1 — CEC15) are mentioned in Table A.2.

A.8. CEC-2017 benchmark test functions

The detailed description of fifteen well-known CEC-2017 bench-
mark test functions (C1 — C30) are mentioned in Table A.3.
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