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Abstract We revisit the Kilbas and Saigo functions
of the Mittag-Leffler type of a real variable ¢, with two
independent real order-parameters. These functions,
subjected to the requirement to be completely mono-
tone for ¢t > 0, can provide suitable models for the
responses and for the corresponding spectral distribu-
tions in anomalous (non—-Debye) relaxation processes,
found e.g. in dielectrics. Our analysis includes as
particular cases the classical models referred to as
Cole—Cole (the one-parameter Mittag-Leffler func-
tion) and to as Kohlrausch (the stretched exponential
function). After some remarks on the Kilbas and Saigo
functions, we discuss a class of fractional differential
equations of order o € (0,1] with a characteristic
coefficient varying in time according to a power law of
exponent f, whose solutions will be presented in terms
of these functions. We show 2D plots of the solutions
and, for a few of them, the corresponding spectral
distributions, keeping fixed one of the two order-
parameters. The numerical results confirm the
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complete monotonicity of the solutions via the non-
negativity of the spectral distributions, provided that
the parameters satisfy the additional condition
0<oa+ <1, assumed by us.
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Completely monotone functions - Fractional
derivative - Spectral distributions - Mittag-
Leffler functions

1 Introduction

In arecent paper Capelas de Oliveira et al. [3] revisited
the Mittag-Leffler functions of a real variable ¢, with
one, two and three order-parameters {oc, B, y}, as far as
their Laplace transform pairs and complete monoto-
nicity properties are concerned. These functions,
subjected to the requirement to be completely mono-
tone for ¢t > 0, are shown to be suitable models for the
physical realizability of non—-Debye (or anomalous)
relaxation phenomena in dielectrics including as
particular cases the classical models referred to as
Cole and Cole [4, 5], Davidson and Cole [6] and
Havriliak and Negami [16, 17]. In the literature a
number of laws have been proposed to describe the
non-Debye relaxation phenomena in dielectrics, of
which the most relevant are the ones referred above,
along with the so-called Kohlrausch law or Kohlr-
ausch and Williams-Watts (KWW) [35, 56] law
(based on the stretched exponential function). For
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more details see e.g. the classical books by Jonscher
[21,22] and the recent book by Uchaikin and Sibatov
[53]. Several authors have investigated these laws and
possible generalizations from different points of view,
including Hilfer [18, 19], Jurlewicz and Weron [23],
Anderssen et al. [2], and more recently Hanyga and
Seredynska [14], Jurlewicz et al. [24] and Stanislavski
et al. [52], Weron et al. [54], just to cite a few.

On the other hand, in our opinion other functions that
can be related to anomalous relaxation processes are the
so-called Kilbas and Saigo functions of Mittag-Leffler
type of a real variable ¢, with two independent real
order-parameters [29]. In fact these functions, sub-
jected to the requirement to be completely monotone
for t > 0, will be shown to provide suitable models for
the responses in non-Debye relaxation processes
found e.g. in dielectrics, including as particular cases
the classical model of Cole—Cole (the one-parameter
Mittag-Leffler function) and the Kohlrausch model
(the stretched exponential function).

This paper is organized as follows.

In Sect. 2, an overview of the classical Mittag-Leffler
functions and Kilbas and Saigo function is presented.

Section 3 is devoted to present the fractional
differential equations of relaxation type with non
constant coefficients whose solutions are expressed in
terms of Kilbas and Saigo function depending on two-
order parameters. As noteworthy particular cases we
recover the classical Mittag-Leffler function and the
stretched exponential function.

In Sect. 4, we show the complete monotonicity of
the Kilbas and Saigo function by presenting the
corresponding non-negative spectral distribution in
the form of a power series. This will be achieved by
using standard methods for Laplace and Stieltjes
transforms. As in Sect. 3, we also recover the
particular cases concerning the spectral distribution
associated with the clasical Mittag-Leffler function
and with the stretched exponential function.

Section 5 is devoted to the numerical results. For
some selected values of the two order parameters we
provide 2D plots of the responses functions and of the
spectral distributions, in order to better visualize the
positivity and the variability of the considered functions.

Finally, Sect. 6 is devoted to the concluding
remarks.

In the appendices, that close the paper, we provide
the details for deriving the noteworthy formulas
presented in Sect. 4.
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2 An overview on the Mittag-Leffler functions

In 1903 Mittag-Leffler published a paper in which a
generalization of the exponential function containing a
single parameter was introduced [41] and named after
him Mittag-Leffler function. Two years later he
published a complete study of this function [42].

A first generalization of this function was presented
by Wiman [57] and studied by Agarwal [1] and
Humbert and Agarwal [20] with the addition of
another parameter. This generalization is referred to
as two-parameter Mittag-Leffler function. The one-
parameter and two-parameter Mittag-Leffler functions
appear also in the classical Bateman hand-book [8].

Later on, some ways emerge in the literature in
order to generalize the previous Mittag-Leffler func-
tions with additional parameters. The most famous and
simple is the so-called three-parameter Mittag-Leffler
function as proposed in 1971 by Prabhakar [46] also
named after him.

We point out that these three functions have nice
properties of complete monotonicity for negative real
argument according to some known relations among
the parameters as formerly showed by Pollard [45] for
the standard Mittag-Leffler function, by Schneider
[49] and Miller and Samko [39] for the two parameter
function and, more recently, by Capelas et al. [3] for
the Prabhakar function. Se also Appendix E in the
recent book by Mainardi [38] and references therein.

In this paper we restrict our attention to three-
parameter functions of the Mittag-Leffler type different
from the Prabhakar functions and to their application in
fractional differential equations related to phenomena of
non standard relaxation. We note that these generalized
Mittag-Leffler functions were proposed for the first time
in 1995 by Kilbas and Saigo in relation to solutions of
non-linear integral equations of Abel-Volterra type [26—
28] and will be referred to as Kilbas and Saigo functions
in the following. In [29] a relation of this generalized
Mittag-Leffler function to fractional calculus was dis-
cussed and in [30] a class of linear differential equations
of fractional order was solved in a closed form, see also
the paper by Saigo and Kilbas [47]. Gorenflo et al. [11]
discussed this function presenting recurrence relations
and, for a particular case of the parameters, connections
with functions of hypergeometric type. Certain properties
of fractional calculus operators associated with these
generalized Mittag-Leffler functions were also discussed
by Saxena and Saigo [48].
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For recent applications of the Kilbas and Saigo
function we cite the 2009 paper by Orsingher & Polito
[43] who discussed the birth-death stochastic pro-
cesses associated with a time-fractional diffusion
equation, the 2010 paper by Kilbas and Repin [25]
who discussed an analog of the Tricomi problem for a
mixed type equation, and, more recently, the 2013
paper by Hanyga and Seredynska [15] who discussed a
problem associated with the so-called Bloch-Torrey
differential equation for an anisotropic time-fractional
diffusion equation relevant in the magnetic resonance
imaging (MRI), see also [37].

In the literature there are other definitions of multi-
index Mittag-Leffler functions, mainly dealt by Kir-
yakova [32-34] and Luchko [36]. Functions of the
Mittag-Leffler type related to fractional calculus have
been investigated in the 2006 book by Kilbas et al.
[31], and in the forthcoming books by Srivastava [50]
and by Gorenflo et al. [10].

3 Fractional differential equations of relaxation
type and the Kilbas and Saigo function

In this section we find the solutions of fractional
differential equations associated with some relaxa-
tion processes in terms of the Kilbas and Saigo
function. Our final purpose is to state the completely
monotonicity of these solutions for a particular
relation involving the parameters entering the gov-
erning fractional differential equations'. In fact

! Let us recall that a real function u(t) defined for t € R" is said
to be completely monotonic (c.m.), if it possesses derivatives
u™(t) for all n = 0,1,2,3,... and if (—=1)"u (£) >0 for all
t>0. The limit u®(0%) = lim,_q:u® () finite or infinite
exists. It is known from the Bernstein theorem that a necessary
and sufficient condition that u(f) be c.m. is that

u(t) = [ e du(r),
/

where pu(f) is non-decreasing and the integral converges for
0<r<oo. In other words u(r) is required to the real Laplace
transform of a non negative measure, in particular

x
u(t)= [ e K(r)dr, K(r)>0,

0
where K(r) is a standard or generalized function known as spectral

distribution. For more mathematical details, consult e.g. the survey
by Miller and Samko [40].

the property of completely monotonicity of the
solutions is characteristic of any relaxation process
to be considered as a (discrete and/or continuous)
superposition of elementary (that is exponential)
relaxation processes. In linear viscoelasticity this
assumption is usually required, see e.g. [38] and
references therein.

Let us consider the following initial-value problem
dfx

—u(t) = —11%u(),

o 1(0) = uy, (1)

t>0,
where 1, A are positive (dimensional) constants, and
the (dimensionless) parameters o, § are subjected to
the conditions

O<a<l, —a<f<1-—o. (2)

The above conditions will be conjectured to be
sufficient to ensure the existence and complete
monotonicity of the solution u(z) for t > 0. In Eq. (1)
the fractional derivative is considered in the Caputo
sense, see e.g. [12, 44]. The particular case {o =
1,8 =0} is associated with the standard relaxation
process, whose solution u(#) = up exp(—A4t), is known
in the framework of the physical theory of dielectrics
as Debye relaxation. With Eq. (1) we intend to
generalize the standard relaxation process by intro-
ducing a non-constant relaxation coefficient depend-
ing on time by a power law and a memory effect due
the fractional derivative

N R 10O
7" =Ty /(t—t’)“ ar,

0

that for o = 1 reduces to the first order derivative #(z).
We will show that the initial-value provided by Egs.
(1) and (2) is suitable to model some non—Debye (or
anomalous) relaxation processes along with the cor-
responding spectral distributions in frequency. Hence-
forth, for the sake of convenience, we agree to use non-
dimensional quantities by setting 1 = 1 = upwithout
loss of generality.

To solve Eq. (1) we proceed as in [30], proposing
the ansatz

S . t”(9<+ﬁ)

u(t) = > (=1)"en( B) Fm (3)

n=0

where c¢,(a, f) to be determined. Substituting this
power series in Eq. (1) and using the relation
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dll té ti*ﬂ 0 4
@{F«:H)}r(«:—wl)’ =0 @

with O<u <1 and ¢ > 0, we obtain the following
recurrence relation

Tn(e+ )+ f+1]
Ln(a+ f) +1]

Let us now consider in the complex plane the Mittag-
Leffler type function as introduced by Kilbas and
Saigo [26, 27] as the power series

ecml § e,

Cup1 (2, f) = cn(a, ). (5)

'i—[l a(im+£) + 1]
Co(im+ £+ 1) +1]’
(6)
with a,m, ¢ €R such that « >0, m>0 and
a(im+4£) £ —1,-2,-3,....
In the above assumptions on the parameters this

function was proved to be entire of order p = 1/a and
type ¢ = m, that means for € > 0

1
|Ea,m.e(2)| < exp KE + 6) zl/“] . zeC. 7

In Eq. (6) an empty product is supposed to be equal

e, so that ¢y = 1.
£Pﬂlen we recogmze that the solution of the initial-

value problem Egs. (1)—(2) is given by

u(t) = E, o o(~**)

Z nrﬁ r O(+ﬁ +ﬁ+1) t(oHrﬁ)n
= s Lo+ B)+at+p+1)

(8)

with the conditions (2). We find worth to introduce the
positive parameter

y=o+p, 9)
so the solution reads

u(t) = E,zs(—1")

=l

00 n—1
n F(ly+’))—3(+1) V)
=1+ " 10
;( 111: Tiiy+y+1) (10)
with the conditions
O<a<l, O0<y<lI. (11)

In the following we will use the parameters {o, f} or
{, 7}, according to our convenience.
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3.1 Particular cases

Hereafter we recover the solutions corresponding to
two particular noteworthy cases of Eq. (10), that is

{0<a<l, p=0} and {x=1, -1<f<0}

which are known to be c.m. functions.
For the first particular case we get

”(t) = E%ﬁl,O(*ﬂ) = Eoc(*fl)v

where E,(-) is the classical Mittag-Leffler function
which is known to be c.m. for negative argument if
O0<a<l,seee.g. [12].

For the second particular case we show that the
solution is associated with the stretched exponential
which is a well known c.m. function. In fact we have
from Eq. (10),

O<a<l, (12)

u(t) = Eypepp(—1""")

KTl A + B4 iy
S T(B+ 1) +ﬁ+2]< ) (13)

n=0 i=

which can be written as

B 0 (_1)n (B+1) n—1
_;(ﬁﬂ ' Hzﬂ (14)

Thus, as the last product is 1/n! and using the
exponential power series, we finally obtain

s )7 (15)

B+1

which is indeed c.m. for —1 < f§<0. Of course such
solution can be derived more directly by integrating
the ordinary differential equation obtained from
Eq. (1) witho = 1 and f > — 1. Setting f = 0 in this
solution we recover

u(t) = Er10(—1) = exp(—1), (16)

that is the exponential solution of the standard
relaxation equation.

u(t) = Eppapp(—1"") = exp (_

4 Complete monotonicity of the Kilbas and Saigo
function

In this section we will assume that the conditions on
the parameters o and f§ stated in Eq. (2) ensure the
complete monotonicity of u(¢) given by Eq. (8). As
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earlier pointed out, this is equivalent to assume that the
conditions on « and y stated in Eq. (11) ensure the
complete monotonicity of u(¢) given by Eq. (10). For
this assumption we prefer to manage with the positive
parameters o, 7, both of which are required to be less or
equal to one.

It is well known that the Bernstein theorem
provides a necessary and sufficient condition for the
complete monotonicity of a function infinitely differ-
entiable for all + > 0. This theorem implies to express
our u(t) as the Laplace transform of a non-negative
measure, that is

u(t) = E,oa(—) = / et (r) dr, (17)
0

where f,,(r) >0 in all of R" is referred to as the
(frequency) spectral distribution. In other words we
must determine a function f;, , (r) satisfying the inverse
Laplace integral

1 d+ico
fa,y(r) = i / eer1.§,¥(_Sy) ds (18)
d—ioo

with d =Re(s) >0 and 0<o <1 and 0<y<1. By
using the relation

L =r/T(u+1), r>0, (19)

valid in classical sense for ¢ > — 1 and in generalises
sense also for < — 1, see e.g. [7], we obtain by
inver’[ing term by term the series expansion of
E,;-«(—s") in Eq. (18) the required spectral distribu-

t1on for r>0,

00 nn 1 . yn+1
Tyj+y—a+1) (1)
fa/ . - .
E: Il Cpi+y+1) \r

n=1

(20)

For details we refer to Appendix 1.

We can arrive at Eq. (20) in an alternative way by
recognizing that the Laplace transform of u(z) is the
Stieltjes transform (that is the iterated Laplace trans-
form) of the spectral distribution. As a consequence
fay(r) can be obtained by the Titchmarsch formula for
the inversion of the Stieltjes transform. See for details
Appendix 2.

We note that the series representation in negative
powers of r provides a limitation to the actual

determination of the spectral distribution K(r) for all
r > 0 because we expect a numerical instability for r
sufficiently close to the origin. However, in some
particular cases, see below, it is possible to sum
exactly the series by an analytical expression valid for
all r > 0.

4.1 Particular cases

Henceforth we derive the spectral distribution for the
particular cases of the parameters o and y =a + f§
considered in Subsection 3.1.

As a first particular case, we discuss the case y = o,
i.e. 0<a<1 and f =0 whose solution is given by
Eq (12), Lt(l) = Uy Ea,lto(—la) = Uy Ez(—l“). Then,
setting y = « in Eq. (20), we get for r > 0

o

loc ( nnl F(X]+1
Jaalr ;;F —on) jl_[F(oc]+oc+

Using the relation

n—1

H M(y+1) 1
s (o +o+1) S T(om+1)

we can write for r > 0

1 & (1
fau ;ZF

n=1

(Uﬂm
Tlon+1)’

Using the reflection formula for the gamma function
the above equation can be written as

Saalr —nizoo: Y~V sin(nom) (1/r)™,
(21)

To evaluate this sum we use the geometric series
getting, see Appendix 3,

1 sin (7o)

nr r* + 2 cos(mar) + =%’

fua(r) = r>0, (22)
which is always non-negative for » > 0 . This result
concerning the spectral distribution of the classical
Mittag-Leffler function is well known and was
discussed in detail by Gorenflo and Mainardi [12].

A second particular case is concerning the stretched
exponential solution Eq. (15) obtained for « = 1 and
0<y<1 (i.e. —1<f<0). In this case the spectral
distribution is known to be the unilateral extremal
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0 1 2 3 4 5

Fig. 1 Plots of u(r) for o« =1 for selected values of f €
(—o, 1 — o] in the time range 0 <7 <5

Lévy density of order y = 1 4 f expressed in terms of
the Wright function (of the second kind), see e.g.
Appendix F in [38]

fialr) = - Woao(=r /)
Lo , (23)
T ; n! (1" _/;2) r>0.

The details of this derivation are found in Appendix 4.

5 Numerical results

Here we discuss the numerical results concerning the
solutions and the spectral distributions previously
obtained in analytical closed-form by exhibiting the
corresponding plots for selected values of the
parameters.

At first we present the plots referring to the solution
given by Eq. (8) for « =1,0.75,0.50,0.25 € (0, 1],
respectively in Figs. 1, 2, 3, and 4. For each value of «
we have selected a few values of f such that
—o<f <1 — o asrequired by Eq. (2) so that 0<y =
o+ <1 as required by Eq. (11).

We note that only in the case o« =1 we get an
exponential-like decay whereas for 0 <o < 1 the decay
is of power law type, that is much slower than the
standard exponential decay pointed out with a dotted
line. The evaluation of the general decay law in terms
of the order parameters o and f§ (or o and y = o + f5)
will be left to a next paper.

Then, we would like to exhibit the plots for the
spectral distributions corresponding to all the above

@ Springer

Fig. 2 Plots of u(r) for o = 0.75 for selected values of f§ €
(—a, 1 — o] in the time range 0 <7< 5

Fig. 3 Plots of u(f) for « = 0.5 for selected values of f§ €
(—a, 1 — o] in the time range 0 <7 <5

1.0
a = 0.25
0.8
0.6
0.4
0.2
0 1 2 3 4 5

Fig. 4 Plots of the u(r) for o = 0.25 for selected values of
p € (—a,1 — o] in the time range 0 <7 <5

cases. However, because of possible numerical insta-
bilities for » — 0 we limit ourselves to those cases
where it is possible to plot the corresponding spectral
distributions also for values of r close to zero.
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1.2

1.0

0.8

0.6

0.4

0.2

4 5

Fig. 5 Plots of the spectral distribution for o =7y =
0.25,0.50,0.75,0.90 ( = 0) in the range 0 <r <5

At first we consider the case {0<a <1, =0} so
y = o for which the series of f, ,(r) can be summed to
give the analytical formula Eq. (22), see also Eq.(39).
The spectral distribution is illustrated in Fig. 5 for
o = 0.25,0.50,0.75,0.90. For o = 1 we recover the
delta function 6(r — 1) centred in r = 1.

Then, we consider the case {a& = 1, —1 < <0} for
which we have provided in Appendix 4, two different
representations for the spectral distribution fi,(r)
(y = 14 p), see the power series in Eq. (43) and the
integral in Eq. (47). We note that, from numerical view
point, for small values of r we must take profit of the
asymptotic representation valid for » — 0 in Eq. (49).

In Figs. 6, 7 we show the spectral distributions for a
few values of 7, that is for {f = —0.25,—0.50. —
0.75} and f = —0.05,-0.15,—0.25}, respectively.
Again for « =y =1 (f =0) we recover the delta
function centred in r = 1.

6 Concluding remarks

In this paper we have analysed some generalized
models of relaxation processes which exhibit memory
effects and a time varying coefficient. Indeed we have
introduced for the field variable a fractional ordinary
differential equation of order « with a coefficient
varying in time as a power law with exponent f. The
resulting process depending on the two parameters
{a, 8} has been dealt with the Kilbas and Saigo
function (of the Mittag-Leffler type) after having
presented an overview on this transcendental function.
Because any relaxation process would be expressed as
a continuous or discrete superposition of elementary

0.8

0.6

0.4

0.2

0.0 :
0 1 2 3 4 5

Fig. 6 Plots of the spectral distribution for « =1 and f§ =
—0.25,—-0.50, —0.75 in the range 0 <r <5

4 5

Fig. 7 Plots of the spectral distribution for « =1 and ff =
—0.05,—-0.15,—0.25 in the range 0 <r <5

exponential processes, the field variable of our process
would result a completely monotone function with a
non-negative spectral distribution of frequencies. By a
conjecture, we have stated that the conditions on the
two parameters ¢, § which are expected to ensure the
complete monotonicity the solution expressed by a
Kilbas and Saigo function. In this paper the corre-
sponding spectral distribution has been given in terms
of a negative power series of the frequency. Two
noteworthy one-parameter processes, namely those
governed by the standard Mittag-Leffler function and
by the stretched exponential, have been recovered as
particular cases. For some study-cases we have
presented numerical results with illustrative plots for
the field variable and for the corresponding spectral
distribution. Although we were not able to provide a
rigorous mathematical proof, our conjecture for the
complete monotonicity has been confirmed in our
numerical results. We hope that our results can be
adopted when the field variable is the response
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function associated with non—Debye relaxation pro-
cesses found e.g. in dielectrics.

For reader’s convenience, the calculations not
contained in the text have been enclosed with details
in four appendices. We point out the limitations of our
method in deriving the spectral distributions as a
power series that could provide numerical instabilities
for very small frequencies. To overcome this trouble it
would be necessary to derive a matching with a
general asymptotic representation for small frequen-
cies that could be obtained from the asymptotic
behaviour of the response function for large times, in
view of the Tauberian theorems for Laplace trans-
forms. For a next paper we leave all the questions not
totally solved with the present analysis.

We finally note that a novel approach to non—-Debye
relaxation has been considered in a recent paper by
Garra et al. [9]. Being based on a different differential
equation of fractional order with a non-constant
coefficients, their approach can be considered com-
plementary to ours.
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Appendix 1: The spectral distribution as inverse
Laplace transform

In this Appendix we will obtain f, 3(r) as provided by
Eq. (20). We know from the Bernstein theorem that
fu,(r) would be associated with the Laplace transform

o0

MﬂzE%%@ﬁ)z/}”ﬁAﬂm, (24)

0

where we have recalled the expression of u(¢) from
Eq. (10).

The corresponding inverse Laplace transform
furnishes

@ Springer

d+ico

1
fouy(r) = 3 / e"u(t) dt,

d—ioco

d>0, (25)

with r > 0. Inserting u(¢) as provided by Eq. (10) and
rearranging we get

o0 n—1 .
WLy +y—a+1)
Furr) =Y (=" T]—=7
ps o Tly+y+1)

d+ioco

— e dt 26
27i (26)
d—ioco

where we have neglected the constant 1 in the
inversion formula because its singular contribution
(of 0 type) is vanishing for r > 0. Using the relation

—ny—1

r

£ = Tm)’

t,r >0, (27)

and substituting this result in the last equation we have

N n (_l)n
2 AT o) (28)

n=1

Jay(r) =

where we have introduced

n—1 1

Tliy+y—a+1)
o 29
1 =1 [rny+l T(iy+7+1) >

i=0

which is always positive. Using the reflection formula
for the gamma function

1

1 .
W - _ EF(I + ny) sin(nny) (30)

we can write
1 & n—1 .
fuy(r) = EZBZ,«,,(")(—U sin(mny), (31)
n=1
where A;ﬁ.’,(r)l"(l +ny) = Bg‘y(r) > 0.
Appendix 2: The spectral distribution as inverse
Stieltjes transform
In this Appendix we obtain the spectral distribution as

inverse Stieltjes transform. First we calculate the
Laplace transform of u(t) as given in Eq. (10),
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Clu) :l+i’ﬁr(iy+y—oc+l)

s i Tlr+r+1)
X (—1)”/e_”t”v dr. (32)
0

Evaluating the last integral we can write

s WLy + 1) iy +y—o+1)
] _ —1
u(s) s s;( ) s g Cly+y+1)

(33)

where u(s) = L[u(t)]. Thus, to obtain f, (r) by means
of the inverse Stieltjes transform we must use the
Titchmarsh formula, see e.g. Titchmarsh [51],
pp 317-319, Widder [55], pp. 339-341, and Gross
[13], namely,

Feolr) = F 1 i)y} (34)

with Im {u(s)} denoting the imaginary part of u(s).
Writing the exponential in terms of cos(nny) and
sin(nny) and taking the imaginary part we have

1 sin(zmny)

Im {ﬁ(s)|szreim} e

'i:[‘r(iy+y—oc+1) (35)
Tiy+y+1)

i=0

We then use the reflection formula for the gamma
function to get

1S ()" Ty +y—a+1) 1
foc,“/(r)_;z Or‘(—n))) F(iy+"/+1) r

n=1 i=

(36)

valid for 0 <y < 1.

Appendix 3: The spectral distribution
of the Mittag-Leffler function

In this Appendix we explicitly derive from Eq. (21) the
formula of the spectral distribution of the Mittag-
Leffler function as provided by Eq. (22). To see this
result we introduce 2isin(non) = ™" — e~ in
Eq. (21), i,

1 o0

s 2 (-

n=1

fa,x(r) = — e*imtn)rfxn' (37)

Separating in two sums, we rewrite the above equation
in the form

1

_ _—oino\ "
fo(,cx(r) - 2mir ;( r-e )
& -
o> (e ™) (38)

Il
o

n

We note that the sum index beginning at n = 0 allows
us to write the two geometric series in terms of their
sums valid for |r*| > 1 as follows

o Loy, 1
T 2mir | 14 roeim 2nir | 14 r—%e—inx

which can be rewritten in the form

fot,oc(r)

f 7 1 (1 + r—oceinx) _ (1 + r—oce—imc)
2 2mir (14 roein) (1 + re—inx)
1 r~*[2i sin(7or)]
 2mir 1 4 r~* - 2 cos(mar) + r—2*’
so that
1 sin (7o
fon () (39)

T et 2cos(mar) + =’

which is the result obtained in Eq. (22). Note that this
result is valid for all r > O even if obtained from the
sum of two geometric series divergent for 0 <r < 1. In
particular, for »r =1 Eq. (39) provides the result
Eq. (40).

Appendix 4: The spectral distribution
of the stretched exponential

In this Appendix we recover, as a particular case, the
spectral distribution f; , (r) of the stretched exponential

u(t) = Ergya (=) = Ei(=1'/y) = exp(=1'/7),
(40)

where we recall 0 <y = 1 4+ < 1. The limiting case

y=1 (f=0) corresponding to the exponential

exp(—1) is excluded because the spectral distribution

degenerates into the Dirac delta function 6(r — 1).
Then, putting « = 1 in Eq. (36) we get

IS D" Tty 1
= L et e @
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valid for 0 <y < 1. Evaluating the product, we have

n—1 . n—1

r 1 1
- Wty M- =11 @
Loy +y) vty mal

Thus, we obtain the spectral distribution given by

fly“/(r) = %;%(%) , >0, (43)

in agreement with Eq. (23).
It is instructive to consider the particular case
y = 1/2, for which we get

%Z_: r( Coy (44)

Using the reflection formula for the gamma function
and taking n — 2n 4 1 we have

l oo
=L

n=0

) 2n+1r n+3/2) pon=1/2
(2n+1)! '

(45)

Finally, by means of the duplication formula for the
gamma function and simplifying we get

1< LA Sy, Sy
fia(r) =l Zo(il) T 2e U,
(46)

This result is well known from the standard tables of
Laplace transforms being the inverse of exp(—2sl/ 2),
see e.g. [7], No (49), p. 320.

We recognize that the power series in Eq. (43), even
if mathematically convergent for all » > 0 is not
suitable to represent numerically the function for
sufficiently small r. In fact in the complex plane the
high transcendental function f; ,(z), being a Wright
function of the second kind (see Appendix F in [38]),
exhibits an essential singularity in z = 0, as it can be
understood in the particular case y=1/2 in
Eq. (46). In other words, we expect for sufficiently
small values of r a very strong rate of change in the
spectral distribution. So we look for an integral
representation alternative to the series representation
Eq. (43) that may be more suitable for numerical
computation.

To this end, first of all, we consider the integral
representation for the reciprocal of gamma function

@ Springer

where Ha is the Hankel contour in the complex plane.
Substituting this expression in Eq. (43) and rearrang-
ing we get

finlr) = 27.rr IZ dre {g(_kl;)k (r;y>k(efﬂvtv)k}.

Using the definition of the exponential function, we
can write

0= o= Y|

Ha

or in the following form

R Y e CoS Ty (1\?
fiy(r) = ;/0 dre”'exp [— . (;) }
. |sinmy 1\
X sm{ ) (;) ], (47)

which is the required integral representation associ-
ated with the Eq. (43).

As an example, we recover the result obtained in
Eq. (46). In this particular case, we consider y = 1/2.
Taking y = 1/2 in Eq. (47) we get

1

fialr) = %/ dte”'sin [2(;)3]
0

Introducing the variable ¢ = u? and using the relation

r 1 p?
/ e P cosbxdx = 3 \/%exp (— @> ,

0

we have

_ 2 ml e U s g
=2\ Fye =g rer

which is the same result as obtained in Eq. (46).
However, from a numerical view point, we note that
we can use the integral representation in Eq. (47) for
the plot of fi,(r) until the point it starts to oscillate
very rapidly. In the integral representation we have a
cos(7y) in the argument of an exponential, and when
y > 1/2 this causes a problem for numerical evalua-
tion of the integral when in association with the
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increase of the oscillation in the term with the sin term.
But in this case we must use the asymptotic represen-
tation of the M-Wright function (see Eq. (F.20) in
Appendix F in [38]) since we have as r — 0,

fiolr) =77 M )
1] (49)

~N————eXp|— r.
271 — 1) p[

For y=1/2 the asymptotic formula in Eq. (49)
provides the exact result found in Eqgs. (46) and (48).
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