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Abstract We revisit the Kilbas and Saigo functions

of the Mittag-Leffler type of a real variable t, with two

independent real order-parameters. These functions,

subjected to the requirement to be completely mono-

tone for t [ 0, can provide suitable models for the

responses and for the corresponding spectral distribu-

tions in anomalous (non–Debye) relaxation processes,

found e.g. in dielectrics. Our analysis includes as

particular cases the classical models referred to as

Cole–Cole (the one-parameter Mittag-Leffler func-

tion) and to as Kohlrausch (the stretched exponential

function). After some remarks on the Kilbas and Saigo

functions, we discuss a class of fractional differential

equations of order a 2 ð0; 1� with a characteristic

coefficient varying in time according to a power law of

exponent b, whose solutions will be presented in terms

of these functions. We show 2D plots of the solutions

and, for a few of them, the corresponding spectral

distributions, keeping fixed one of the two order-

parameters. The numerical results confirm the

complete monotonicity of the solutions via the non-

negativity of the spectral distributions, provided that

the parameters satisfy the additional condition

0\aþ b� 1, assumed by us.

Keywords Anomalous relaxation �
Completely monotone functions � Fractional

derivative � Spectral distributions � Mittag-

Leffler functions

1 Introduction

In a recent paper Capelas de Oliveira et al. [3] revisited

the Mittag-Leffler functions of a real variable t, with

one, two and three order-parameters fa; b; cg, as far as

their Laplace transform pairs and complete monoto-

nicity properties are concerned. These functions,

subjected to the requirement to be completely mono-

tone for t [ 0, are shown to be suitable models for the

physical realizability of non–Debye (or anomalous)

relaxation phenomena in dielectrics including as

particular cases the classical models referred to as

Cole and Cole [4, 5], Davidson and Cole [6] and

Havriliak and Negami [16, 17]. In the literature a

number of laws have been proposed to describe the

non–Debye relaxation phenomena in dielectrics, of

which the most relevant are the ones referred above,

along with the so-called Kohlrausch law or Kohlr-

ausch and Williams-Watts (KWW) [35, 56] law

(based on the stretched exponential function). For
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more details see e.g. the classical books by Jonscher

[21,22] and the recent book by Uchaikin and Sibatov

[53]. Several authors have investigated these laws and

possible generalizations from different points of view,

including Hilfer [18, 19], Jurlewicz and Weron [23],

Anderssen et al. [2], and more recently Hanyga and

Seredyńska [14], Jurlewicz et al. [24] and Stanislavski

et al. [52], Weron et al. [54], just to cite a few.

On the other hand, in our opinion other functions that

can be related to anomalous relaxation processes are the

so-called Kilbas and Saigo functions of Mittag-Leffler

type of a real variable t, with two independent real

order-parameters [29]. In fact these functions, sub-

jected to the requirement to be completely monotone

for t [ 0, will be shown to provide suitable models for

the responses in non–Debye relaxation processes

found e.g. in dielectrics, including as particular cases

the classical model of Cole–Cole (the one-parameter

Mittag-Leffler function) and the Kohlrausch model

(the stretched exponential function).

This paper is organized as follows.

In Sect. 2, an overview of the classical Mittag-Leffler

functions and Kilbas and Saigo function is presented.

Section 3 is devoted to present the fractional

differential equations of relaxation type with non

constant coefficients whose solutions are expressed in

terms of Kilbas and Saigo function depending on two-

order parameters. As noteworthy particular cases we

recover the classical Mittag-Leffler function and the

stretched exponential function.

In Sect. 4, we show the complete monotonicity of

the Kilbas and Saigo function by presenting the

corresponding non-negative spectral distribution in

the form of a power series. This will be achieved by

using standard methods for Laplace and Stieltjes

transforms. As in Sect. 3, we also recover the

particular cases concerning the spectral distribution

associated with the clasical Mittag-Leffler function

and with the stretched exponential function.

Section 5 is devoted to the numerical results. For

some selected values of the two order parameters we

provide 2D plots of the responses functions and of the

spectral distributions, in order to better visualize the

positivity and the variability of the considered functions.

Finally, Sect. 6 is devoted to the concluding

remarks.

In the appendices, that close the paper, we provide

the details for deriving the noteworthy formulas

presented in Sect. 4.

2 An overview on the Mittag-Leffler functions

In 1903 Mittag-Leffler published a paper in which a

generalization of the exponential function containing a

single parameter was introduced [41] and named after

him Mittag-Leffler function. Two years later he

published a complete study of this function [42].

A first generalization of this function was presented

by Wiman [57] and studied by Agarwal [1] and

Humbert and Agarwal [20] with the addition of

another parameter. This generalization is referred to

as two-parameter Mittag-Leffler function. The one-

parameter and two-parameter Mittag-Leffler functions

appear also in the classical Bateman hand-book [8].

Later on, some ways emerge in the literature in

order to generalize the previous Mittag-Leffler func-

tions with additional parameters. The most famous and

simple is the so-called three-parameter Mittag-Leffler

function as proposed in 1971 by Prabhakar [46] also

named after him.

We point out that these three functions have nice

properties of complete monotonicity for negative real

argument according to some known relations among

the parameters as formerly showed by Pollard [45] for

the standard Mittag-Leffler function, by Schneider

[49] and Miller and Samko [39] for the two parameter

function and, more recently, by Capelas et al. [3] for

the Prabhakar function. Se also Appendix E in the

recent book by Mainardi [38] and references therein.

In this paper we restrict our attention to three-

parameter functions of the Mittag-Leffler type different

from the Prabhakar functions and to their application in

fractional differential equations related to phenomena of

non standard relaxation. We note that these generalized

Mittag-Leffler functions were proposed for the first time

in 1995 by Kilbas and Saigo in relation to solutions of

non-linear integral equations of Abel-Volterra type [26–

28] and will be referred to as Kilbas and Saigo functions

in the following. In [29] a relation of this generalized

Mittag-Leffler function to fractional calculus was dis-

cussed and in [30] a class of linear differential equations

of fractional order was solved in a closed form, see also

the paper by Saigo and Kilbas [47]. Gorenflo et al. [11]

discussed this function presenting recurrence relations

and, for a particular case of the parameters, connections

with functions of hypergeometric type. Certain properties

of fractional calculus operators associated with these

generalized Mittag-Leffler functions were also discussed

by Saxena and Saigo [48].
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For recent applications of the Kilbas and Saigo

function we cite the 2009 paper by Orsingher & Polito

[43] who discussed the birth-death stochastic pro-

cesses associated with a time-fractional diffusion

equation, the 2010 paper by Kilbas and Repin [25]

who discussed an analog of the Tricomi problem for a

mixed type equation, and, more recently, the 2013

paper by Hanyga and Seredyńska [15] who discussed a

problem associated with the so-called Bloch-Torrey

differential equation for an anisotropic time-fractional

diffusion equation relevant in the magnetic resonance

imaging (MRI), see also [37].

In the literature there are other definitions of multi-

index Mittag-Leffler functions, mainly dealt by Kir-

yakova [32–34] and Luchko [36]. Functions of the

Mittag-Leffler type related to fractional calculus have

been investigated in the 2006 book by Kilbas et al.

[31], and in the forthcoming books by Srivastava [50]

and by Gorenflo et al. [10].

3 Fractional differential equations of relaxation

type and the Kilbas and Saigo function

In this section we find the solutions of fractional

differential equations associated with some relaxa-

tion processes in terms of the Kilbas and Saigo

function. Our final purpose is to state the completely

monotonicity of these solutions for a particular

relation involving the parameters entering the gov-

erning fractional differential equations1. In fact

the property of completely monotonicity of the

solutions is characteristic of any relaxation process

to be considered as a (discrete and/or continuous)

superposition of elementary (that is exponential)

relaxation processes. In linear viscoelasticity this

assumption is usually required, see e.g. [38] and

references therein.

Let us consider the following initial-value problem

da

dta
uðtÞ ¼ �k tbuðtÞ; t [ 0; uð0Þ ¼ u0; ð1Þ

where u0, k are positive (dimensional) constants, and

the (dimensionless) parameters a; b are subjected to

the conditions

0\a� 1; �a\b� 1� a: ð2Þ

The above conditions will be conjectured to be

sufficient to ensure the existence and complete

monotonicity of the solution uðtÞ for t� 0. In Eq. (1)

the fractional derivative is considered in the Caputo

sense, see e.g. [12, 44]. The particular case fa ¼
1; b ¼ 0g is associated with the standard relaxation

process, whose solution uðtÞ ¼ u0 expð�ktÞ, is known

in the framework of the physical theory of dielectrics

as Debye relaxation. With Eq. (1) we intend to

generalize the standard relaxation process by intro-

ducing a non-constant relaxation coefficient depend-

ing on time by a power law and a memory effect due

the fractional derivative

da

dta
uðtÞ ¼ 1

Cð1� aÞ

Z t

0

_uðt0Þ
ðt � t0Þa dt0;

that for a ¼ 1 reduces to the first order derivative _uðtÞ.
We will show that the initial-value provided by Eqs.

(1) and (2) is suitable to model some non–Debye (or

anomalous) relaxation processes along with the cor-

responding spectral distributions in frequency. Hence-

forth, for the sake of convenience, we agree to use non-

dimensional quantities by setting k ¼ 1 ¼ u0without

loss of generality.

To solve Eq. (1) we proceed as in [30], proposing

the ansatz

uðtÞ ¼
X1
n¼0

ð�1Þncnða; bÞ
tnðaþbÞ

C½nðaþ bÞ þ 1� ; ð3Þ

where cnða; bÞ to be determined. Substituting this

power series in Eq. (1) and using the relation

1 Let us recall that a real function uðtÞ defined for t 2 R
þ is said

to be completely monotonic (c.m.), if it possesses derivatives

uðnÞðtÞ for all n ¼ 0; 1; 2; 3; . . . and if ð�1ÞnuðnÞðtÞ� 0 for all

t [ 0. The limit uðnÞð0þÞ ¼ limt!0þuðnÞðtÞ finite or infinite

exists. It is known from the Bernstein theorem that a necessary

and sufficient condition that uðtÞ be c.m. is that

uðtÞ ¼
Z1

0

e�rt dlðrÞ;

where lðtÞ is non-decreasing and the integral converges for
0\t\1. In other words uðtÞ is required to the real Laplace
transform of a non negative measure, in particular

uðtÞ ¼
Z1

0

e�rt KðrÞ dr; KðrÞ� 0;

where KðrÞ is a standard or generalized function known as spectral
distribution. For more mathematical details, consult e.g. the survey
by Miller and Samko [40].
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dl

dtl
tn

Cðnþ 1Þ

� �
¼ tn�l

Cðn� lþ 1Þ ; t [ 0; ð4Þ

with 0\l� 1 and n[ 0, we obtain the following

recurrence relation

cnþ1ða; bÞ ¼
C½nðaþ bÞ þ bþ 1�

C½nðaþ bÞ þ 1� cnða; bÞ: ð5Þ

Let us now consider in the complex plane the Mittag-

Leffler type function as introduced by Kilbas and

Saigo [26, 27] as the power series

Ea;m;‘ðzÞ ¼
X1
n¼0

cnzn; cn ¼
Yn�1

i¼0

C½aðimþ ‘Þ þ 1�
C½aðimþ ‘þ 1Þ þ 1� ;

ð6Þ

with a;m; ‘ 2 R such that a [ 0, m [ 0 and

aðimþ ‘Þ 6¼ �1;�2;�3; . . ..

In the above assumptions on the parameters this

function was proved to be entire of order q ¼ 1=a and

type r ¼ m, that means for �[ 0

7

In Eq. (6) an empty product is supposed to be equal

one, so that c0 ¼ 1.
Then, we recognize that the solution of the initial-

value problem Eqs. (1)–(2) is given by

uðtÞ ¼Ea;1þb
a;

b
a
ð�taþbÞ

¼ 1þ
X1
n¼1

ð�1Þn
Yn�1

i¼0

CðiðaþbÞþbþ1Þ
CðiðaþbÞþaþbþ1Þ t

ðaþbÞn

ð8Þ

with the conditions (2). We find worth to introduce the

positive parameter

c � aþ b; ð9Þ

so the solution reads

uðtÞ ¼ Ea;ca;
c�a
a
ð�tcÞ

¼ 1þ
X1
n¼1

ð�1Þn
Yn�1

i¼0

Cðicþ c� aþ 1Þ
Cðicþ cþ 1Þ tcn ð10Þ

with the conditions

0\a� 1; 0\c� 1: ð11Þ

In the following we will use the parameters fa; bg or

fa; cg, according to our convenience.

3.1 Particular cases

Hereafter we recover the solutions corresponding to

two particular noteworthy cases of Eq. (10), that is

f0\a\1; b ¼ 0g and fa ¼ 1; �1\b� 0g

which are known to be c.m. functions.

For the first particular case we get

uðtÞ ¼ Ea;1;0ð�taÞ ¼ Eað�taÞ; 0\a\1; ð12Þ

where Eað�Þ is the classical Mittag-Leffler function

which is known to be c.m. for negative argument if

0\a� 1, see e.g. [12].

For the second particular case we show that the

solution is associated with the stretched exponential

which is a well known c.m. function. In fact we have

from Eq. (10),

uðtÞ ¼ E1;1þb;bð�tbþ1Þ

¼
X1
n¼0

Yn�1

i¼0

C½iðbþ 1Þ þ bþ 1�
C½iðbþ 1Þ þ bþ 2� �tbþ1

� �n ð13Þ

which can be written as

uðtÞ ¼
X1
n¼0

ð�1Þn

ðbþ 1Þn tnðbþ1Þ
Yn�1

i¼0

1

iþ 1
: ð14Þ

Thus, as the last product is 1=n! and using the

exponential power series, we finally obtain

uðtÞ ¼ E1;1þb;bð�tbþ1Þ ¼ exp � tbþ1

bþ 1

� �
; ð15Þ

which is indeed c.m. for �1\b� 0. Of course such

solution can be derived more directly by integrating

the ordinary differential equation obtained from

Eq. (1) with a ¼ 1 and b[ � 1. Setting b ¼ 0 in this

solution we recover

uðtÞ ¼ E1;1;0ð�tÞ ¼ expð�tÞ; ð16Þ

that is the exponential solution of the standard

relaxation equation.

4 Complete monotonicity of the Kilbas and Saigo

function

In this section we will assume that the conditions on

the parameters a and b stated in Eq. (2) ensure the

complete monotonicity of uðtÞ given by Eq. (8). As
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earlier pointed out, this is equivalent to assume that the

conditions on a and c stated in Eq. (11) ensure the

complete monotonicity of uðtÞ given by Eq. (10). For

this assumption we prefer to manage with the positive

parameters a, c, both of which are required to be less or

equal to one.

It is well known that the Bernstein theorem

provides a necessary and sufficient condition for the

complete monotonicity of a function infinitely differ-

entiable for all t [ 0 . This theorem implies to express

our uðtÞ as the Laplace transform of a non-negative

measure, that is

uðtÞ � Ea;ca;
c�a
a
ð�tcÞ ¼

Z1

0

e�rtfa;cðrÞ dr; ð17Þ

where fa;cðrÞ� 0 in all of IRþ is referred to as the

(frequency) spectral distribution. In other words we

must determine a function fa;cðrÞ satisfying the inverse

Laplace integral

fa;cðrÞ ¼
1

2pi

Zdþi1

d�i1

esrEa;ca;
c�a
a
ð�scÞ ds ð18Þ

with d ¼ ReðsÞ[ 0 and 0\a� 1 and 0\c� 1. By

using the relation

L�1½s�l�1� ¼ rl=Cðlþ 1Þ; r [ 0; ð19Þ

valid in classical sense for l [ � 1 and in generalises

sense also for l� � 1, see e.g. [7], we obtain by

inverting term by term the series expansion of

Ea;ca;
c�a
a
ð�scÞ in Eq. (18) the required spectral distribu-

tion for r [ 0,

fa;cðrÞ ¼
X1
n¼1

ð�1Þn

Cð�cnÞ
Yn�1

j¼0

Cðcjþ c� aþ 1Þ
Cðcjþ cþ 1Þ

1

r

� �cnþ1

:

ð20Þ

For details we refer to Appendix 1.

We can arrive at Eq. (20) in an alternative way by

recognizing that the Laplace transform of uðtÞ is the

Stieltjes transform (that is the iterated Laplace trans-

form) of the spectral distribution. As a consequence

fa;cðrÞ can be obtained by the Titchmarsch formula for

the inversion of the Stieltjes transform. See for details

Appendix 2.

We note that the series representation in negative

powers of r provides a limitation to the actual

determination of the spectral distribution KðrÞ for all

r� 0 because we expect a numerical instability for r

sufficiently close to the origin. However, in some

particular cases, see below, it is possible to sum

exactly the series by an analytical expression valid for

all r [ 0.

4.1 Particular cases

Henceforth we derive the spectral distribution for the

particular cases of the parameters a and c ¼ aþ b
considered in Subsection 3.1.

As a first particular case, we discuss the case c ¼ a,

i.e. 0\a\1 and b ¼ 0 whose solution is given by

Eq. (12), uðtÞ ¼ u0 Ea;1;0ð�taÞ ¼ u0 Eað�taÞ. Then,

setting c ¼ a in Eq. (20), we get for r [ 0

fa;aðrÞ ¼
1

r

X1
n¼1

ð�1Þn

Cð�anÞ
Yn�1

j¼0

Cðajþ 1Þ
Cðajþ aþ 1Þ

1

r

� �an

:

Using the relation

Yn�1

j¼0

Cðajþ 1Þ
Cðajþ aþ 1Þ ¼

1

Cðanþ 1Þ

we can write for r [ 0

fa;aðrÞ ¼
1

r

X1
n¼1

ð�1Þn

Cð�anÞ
ð1=rÞan

Cðanþ 1Þ ;

Using the reflection formula for the gamma function

the above equation can be written as

fa;aðrÞ ¼
1

pr

X1
n¼1

ð�1Þn�1
sinðpanÞð1=rÞan; r [ 0:

ð21Þ

To evaluate this sum we use the geometric series

getting, see Appendix 3,

fa;aðrÞ ¼
1

pr

sinðpaÞ
ra þ 2 cosðpaÞ þ r�a

; r [ 0; ð22Þ

which is always non-negative for r [ 0 . This result

concerning the spectral distribution of the classical

Mittag-Leffler function is well known and was

discussed in detail by Gorenflo and Mainardi [12].

A second particular case is concerning the stretched

exponential solution Eq. (15) obtained for a ¼ 1 and

0\c\1 (i.e. �1\b\0). In this case the spectral

distribution is known to be the unilateral extremal
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Lévy density of order c ¼ 1þ b expressed in terms of

the Wright function (of the second kind), see e.g.

Appendix F in [38]

f1;cðrÞ ¼
1

r
W�c;0 �r�c=cð Þ

¼ 1

r

X1
n¼1

ð�1Þn

n!

r�c=cð Þn

Cð�cnÞ ; r [ 0:
ð23Þ

The details of this derivation are found in Appendix 4.

5 Numerical results

Here we discuss the numerical results concerning the

solutions and the spectral distributions previously

obtained in analytical closed-form by exhibiting the

corresponding plots for selected values of the

parameters.

At first we present the plots referring to the solution

given by Eq. (8) for a ¼ 1; 0:75; 0:50; 0:25 2 ð0; 1�,
respectively in Figs. 1, 2, 3, and 4. For each value of a
we have selected a few values of b such that

�a\b� 1� a as required by Eq. (2) so that 0\c �
aþ b� 1 as required by Eq. (11).

We note that only in the case a ¼ 1 we get an

exponential-like decay whereas for 0\a\1 the decay

is of power law type, that is much slower than the

standard exponential decay pointed out with a dotted

line. The evaluation of the general decay law in terms

of the order parameters a and b (or a and c ¼ aþ b)

will be left to a next paper.

Then, we would like to exhibit the plots for the

spectral distributions corresponding to all the above

cases. However, because of possible numerical insta-

bilities for r ! 0 we limit ourselves to those cases

where it is possible to plot the corresponding spectral

distributions also for values of r close to zero.

Fig. 1 Plots of uðtÞ for a ¼ 1 for selected values of b 2
ð�a; 1� a� in the time range 0� t� 5

Fig. 2 Plots of uðtÞ for a ¼ 0:75 for selected values of b 2
ð�a; 1� a� in the time range 0� t� 5

Fig. 3 Plots of uðtÞ for a ¼ 0:5 for selected values of b 2
ð�a; 1� a� in the time range 0� t� 5

Fig. 4 Plots of the uðtÞ for a ¼ 0:25 for selected values of

b 2 ð�a; 1� a� in the time range 0� t� 5
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At first we consider the case f0\a\1; b ¼ 0g so

c ¼ a for which the series of fa;aðrÞ can be summed to

give the analytical formula Eq. (22), see also Eq.(39).

The spectral distribution is illustrated in Fig. 5 for

a ¼ 0:25; 0:50; 0:75; 0:90. For a ¼ 1 we recover the

delta function dðr � 1Þ centred in r ¼ 1.

Then, we consider the case fa ¼ 1;�1\b� 0g for

which we have provided in Appendix 4, two different

representations for the spectral distribution f1;cðrÞ
(c ¼ 1þ b), see the power series in Eq. (43) and the

integral in Eq. (47). We note that, from numerical view

point, for small values of r we must take profit of the

asymptotic representation valid for r ! 0 in Eq. (49).

In Figs. 6, 7 we show the spectral distributions for a

few values of c, that is for fb ¼ �0:25;�0:50:�
0:75g and b ¼ �0:05;�0:15;�0:25g, respectively.

Again for a ¼ c ¼ 1 (b ¼ 0) we recover the delta

function centred in r ¼ 1.

6 Concluding remarks

In this paper we have analysed some generalized

models of relaxation processes which exhibit memory

effects and a time varying coefficient. Indeed we have

introduced for the field variable a fractional ordinary

differential equation of order a with a coefficient

varying in time as a power law with exponent b. The

resulting process depending on the two parameters

fa; bg has been dealt with the Kilbas and Saigo

function (of the Mittag-Leffler type) after having

presented an overview on this transcendental function.

Because any relaxation process would be expressed as

a continuous or discrete superposition of elementary

exponential processes, the field variable of our process

would result a completely monotone function with a

non-negative spectral distribution of frequencies. By a

conjecture, we have stated that the conditions on the

two parameters a; b which are expected to ensure the

complete monotonicity the solution expressed by a

Kilbas and Saigo function. In this paper the corre-

sponding spectral distribution has been given in terms

of a negative power series of the frequency. Two

noteworthy one-parameter processes, namely those

governed by the standard Mittag-Leffler function and

by the stretched exponential, have been recovered as

particular cases. For some study-cases we have

presented numerical results with illustrative plots for

the field variable and for the corresponding spectral

distribution. Although we were not able to provide a

rigorous mathematical proof, our conjecture for the

complete monotonicity has been confirmed in our

numerical results. We hope that our results can be

adopted when the field variable is the response

Fig. 5 Plots of the spectral distribution for a ¼ c ¼
0:25; 0:50; 0:75; 0:90 (b ¼ 0) in the range 0� r� 5

Fig. 6 Plots of the spectral distribution for a ¼ 1 and b ¼
�0:25;�0:50;�0:75 in the range 0� r� 5

Fig. 7 Plots of the spectral distribution for a ¼ 1 and b ¼
�0:05;�0:15;�0:25 in the range 0� r� 5
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function associated with non–Debye relaxation pro-

cesses found e.g. in dielectrics.

For reader’s convenience, the calculations not

contained in the text have been enclosed with details

in four appendices. We point out the limitations of our

method in deriving the spectral distributions as a

power series that could provide numerical instabilities

for very small frequencies. To overcome this trouble it

would be necessary to derive a matching with a

general asymptotic representation for small frequen-

cies that could be obtained from the asymptotic

behaviour of the response function for large times, in

view of the Tauberian theorems for Laplace trans-

forms. For a next paper we leave all the questions not

totally solved with the present analysis.

We finally note that a novel approach to non–Debye

relaxation has been considered in a recent paper by

Garra et al. [9]. Being based on a different differential

equation of fractional order with a non-constant

coefficients, their approach can be considered com-

plementary to ours.
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Appendix 1: The spectral distribution as inverse

Laplace transform

In this Appendix we will obtain fa;bðrÞ as provided by

Eq. (20). We know from the Bernstein theorem that

fa;cðrÞ would be associated with the Laplace transform

uðtÞ � Ea;ca;
c�a
a
ð�tcÞ ¼

Z1

0

e�rtfa;cðrÞ dr; ð24Þ

where we have recalled the expression of uðtÞ from

Eq. (10).

The corresponding inverse Laplace transform

furnishes

fa;cðrÞ ¼
1

2pi

Zdþi1

d�i1

ertuðtÞ dt; d [ 0; ð25Þ

with r [ 0. Inserting uðtÞ as provided by Eq. (10) and

rearranging we get

fa;cðrÞ ¼
X1
n¼1

ð�1Þn
Yn�1

i¼0

Cðicþ c� aþ 1Þ
Cðicþ cþ 1Þ

� 1

2pi

Zdþi1

d�i1

erttcn dt ð26Þ

where we have neglected the constant 1 in the

inversion formula because its singular contribution

(of d type) is vanishing for r [ 0. Using the relation

L�1½tcn� ¼ r�nc�1

Cð�ncÞ ; t; r [ 0; ð27Þ

and substituting this result in the last equation we have

fa;cðrÞ ¼
X1
n¼1

An
a;c
ð�1Þn

Cð�ncÞ ; ð28Þ

where we have introduced

An
a;cðrÞ ¼

Yn�1

i¼0

1

rncþ1

Cðicþ c� aþ 1Þ
Cðicþ cþ 1Þ ð29Þ

which is always positive. Using the reflection formula

for the gamma function

1

Cð�ncÞ ¼ �
1

p
Cð1þ ncÞ sinðpncÞ ð30Þ

we can write

fa;cðrÞ ¼
1

p

X1
n¼1

Bn
a;cðrÞð�1Þn�1

sinðpncÞ; ð31Þ

where An
a;cðrÞCð1þ ncÞ ¼ Bn

a;cðrÞ[ 0.

Appendix 2: The spectral distribution as inverse

Stieltjes transform

In this Appendix we obtain the spectral distribution as

inverse Stieltjes transform. First we calculate the

Laplace transform of uðtÞ as given in Eq. (10),
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L½uðtÞ� ¼ 1

s
þ
X1
n¼1

Yn�1

i¼0

Cðicþ c� aþ 1Þ
Cðicþ cþ 1Þ

� ð�1Þn
Z1

0

e�sttnc dt: ð32Þ

Evaluating the last integral we can write

euðsÞ¼ 1

s
þ1

s

X1
n¼1

ð�1Þn Cðncþ1Þ
snc

Yn�1

i¼0

Cðicþc�aþ1Þ
Cðicþcþ1Þ ;

ð33Þ

where euðsÞ¼L½uðtÞ�. Thus, to obtain fa;bðrÞ by means

of the inverse Stieltjes transform we must use the

Titchmarsh formula, see e.g. Titchmarsh [51],

pp 317–319, Widder [55], pp. 339–341, and Gross

[13], namely,

fa;cðrÞ ¼ 	
1

p
Im euðsÞjs¼r e
ip

� 	
; ð34Þ

with Im euðsÞf g denoting the imaginary part of euðsÞ.
Writing the exponential in terms of cosðpncÞ and

sinðpncÞ and taking the imaginary part we have

Im euðsÞjs¼r e
ip

� 	
¼ �1

p
sinðpncÞ

rncþ1

�
Yn�1

i¼0

Cðicþ c� aþ 1Þ
Cðicþ cþ 1Þ ð35Þ

We then use the reflection formula for the gamma

function to get

fa;cðrÞ ¼
1

r

X1
n¼1

Yn�1

i¼0

ð�1Þn

Cð�ncÞ
Cðicþ c� aþ 1Þ

Cðicþ cþ 1Þ
1

rnc

ð36Þ

valid for 0\c� 1.

Appendix 3: The spectral distribution

of the Mittag-Leffler function

In this Appendix we explicitly derive from Eq. (21) the

formula of the spectral distribution of the Mittag-

Leffler function as provided by Eq. (22). To see this

result we introduce 2i sinðpanÞ ¼ eipan � e�ipan in

Eq. (21), i.e.,

fa;aðrÞ ¼ �
1

2pir

X1
n¼1

ð�1Þn eipan� e�ipan
� �

r�an: ð37Þ

Separating in two sums, we rewrite the above equation

in the form

fa;aðrÞ ¼ �
1

2pir

X1
n¼0

�r�aeipa
� �n

þ 1

2pir

X1
n¼0

�r�ae�ipa
� �n

: ð38Þ

We note that the sum index beginning at n ¼ 0 allows

us to write the two geometric series in terms of their

sums valid for jraj[ 1 as follows

fa;aðrÞ¼�
1

2pir

1

1þ r�aeipa

� �
þ 1

2pir

1

1þ r�ae�ipa

� �

which can be rewritten in the form

fa;a ¼
1

2pir

ð1þ r�aeipaÞ � ð1þ r�ae�ipaÞ
ð1þ r�aeipaÞð1þ r�ae�ipaÞ

¼ 1

2pir

r�a½2i sinðpaÞ�
1þ r�a � 2 cosðpaÞ þ r�2a

;

so that

fa;a ¼
1

pr

sinðpaÞ
ra þ 2 cosðpaÞ þ r�a

; ð39Þ

which is the result obtained in Eq. (22). Note that this

result is valid for all r [ 0 even if obtained from the

sum of two geometric series divergent for 0\r\1. In

particular, for r ¼ 1 Eq. (39) provides the result

Eq. (40).

Appendix 4: The spectral distribution

of the stretched exponential

In this Appendix we recover, as a particular case, the

spectral distribution f1;cðrÞ of the stretched exponential

uðtÞ ¼ E1;c;c�1 �tcð Þ ¼ E1 �tc=cð Þ ¼ exp �tc=cð Þ;
ð40Þ

where we recall 0\c ¼ 1þ b\1. The limiting case

c ¼ 1 (b ¼ 0) corresponding to the exponential

expð�tÞ is excluded because the spectral distribution

degenerates into the Dirac delta function dðr � 1Þ.
Then, putting a ¼ 1 in Eq. (36) we get

f1;cðrÞ¼
1

r

X1
n¼1

Yn�1

i¼0

ð�1Þn

Cð�ncÞ
Cðicþ cÞ

Cðicþ cþ 1Þ
1

rnc
; ð41Þ
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valid for 0\c� 1. Evaluating the product, we have

Yn�1

i¼0

Cðicþ cÞ
ðicþ cÞCðicþ cÞ ¼

Yn�1

i¼0

1

icþ c
¼ 1

cn

1

n!
: ð42Þ

Thus, we obtain the spectral distribution given by

f1;cðrÞ ¼
1

r

X1
n¼1

ð�1Þn

n!Cð�ncÞ
r�c

c

� �n

; r [ 0; ð43Þ

in agreement with Eq. (23).

It is instructive to consider the particular case

c ¼ 1=2, for which we get

f1;12
ðrÞ ¼ 1

r

X1
n¼1

ð�2Þn

n!Cð�n=2Þ r
�n=2: ð44Þ

Using the reflection formula for the gamma function

and taking n! 2nþ 1 we have

f1;1
2
ðrÞ ¼ 1

pr

X1
n¼0

ð�1Þn22nþ1 Cðnþ 3=2Þ
ð2nþ 1Þ! r�n�1=2:

ð45Þ

Finally, by means of the duplication formula for the

gamma function and simplifying we get

f1;1
2
ðrÞ ¼ 1ffiffiffi

p
p

r3=2

X1
n¼0

ð�1Þn r�n

n!
¼ 1ffiffiffi

p
p r�3=2 e�1=r:

ð46Þ

This result is well known from the standard tables of

Laplace transforms being the inverse of exp �2s1=2
� �

,

see e.g. [7], No (49), p. 320.

We recognize that the power series in Eq. (43), even

if mathematically convergent for all r [ 0 is not

suitable to represent numerically the function for

sufficiently small r. In fact in the complex plane the

high transcendental function f1;cðzÞ, being a Wright

function of the second kind (see Appendix F in [38]),

exhibits an essential singularity in z ¼ 0, as it can be

understood in the particular case c ¼ 1=2 in

Eq. (46). In other words, we expect for sufficiently

small values of r a very strong rate of change in the

spectral distribution. So we look for an integral

representation alternative to the series representation

Eq. (43) that may be more suitable for numerical

computation.

To this end, first of all, we consider the integral

representation for the reciprocal of gamma function

1

Cð�ckÞ ¼
i

2p

Z

Ha

e�tð�tÞck
dt;

where Ha is the Hankel contour in the complex plane.

Substituting this expression in Eq. (43) and rearrang-

ing we get

f1;cðrÞ ¼
i

2pr

Z

Ha

dt e�t
X1
k¼0

ð�1Þk

k!

r�c

c

� �k

e�ipctc
� �k

( )
:

Using the definition of the exponential function, we

can write

f1;cðrÞ ¼
i

2pr

Z

Ha

dt exp �t � eipc

c
t

r

� �c

 �

;

or in the following form

f1;cðrÞ ¼
1

pr

Z 1
0

dt e�texp � cos pc
c

t

r

� �c

 �

� sin
sin pc

c
t

r

� �c

 �

; ð47Þ

which is the required integral representation associ-

ated with the Eq. (43).

As an example, we recover the result obtained in

Eq. (46). In this particular case, we consider c ¼ 1=2.

Taking c ¼ 1=2 in Eq. (47) we get

f1;1
2
ðrÞ ¼ 1

pr

Z1

0

dt e�t sin 2
t

r

� �1
2


 �
:

Introducing the variable t ¼ u2 and using the relation

Z1

0

e�bx2

cos bx dx ¼ 1

2

ffiffiffi
p
b

r
exp � b2

4b

� �
;

we have

f1;12
ðrÞ ¼ 2

pr

ffiffiffi
p
r

r
1

2
e�1=r ¼ 1ffiffiffi

p
p r�3=2 e�1=r; ð48Þ

which is the same result as obtained in Eq. (46).

However, from a numerical view point, we note that

we can use the integral representation in Eq. (47) for

the plot of f1;cðrÞ until the point it starts to oscillate

very rapidly. In the integral representation we have a

cosðpcÞ in the argument of an exponential, and when

c[ 1=2 this causes a problem for numerical evalua-

tion of the integral when in association with the
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increase of the oscillation in the term with the sin term.

But in this case we must use the asymptotic represen-

tation of the M-Wright function (see Eq. (F.20) in

Appendix F in [38]) since we have as r ! 0,

f1;cðrÞ ¼ r�1�c Mc r�c=cð Þ

� r�
1�c=2

1�cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1� cÞ

p exp � 1� c
c

r�
c

1�c


 �
:

ð49Þ

For c ¼ 1=2 the asymptotic formula in Eq. (49)

provides the exact result found in Eqs. (46) and (48).
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