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Abstract

In this study, a precise and efficient eigenvalue-based machine learning algorithm, particularly denoted as Eigenvalue
Classification (EigenClass) algorithm, has been presented to deal with classification problems. The EigenClass algorithm is
constructed by exploiting an eigenvalue-based proximity evaluation. To appreciate the classification performance of
EigenClass, it is compared with the well-known algorithms, such as k-nearest neighbours, fuzzy k-nearest neighbours,
random forest (RF) and multi-support vector machines. Number of 20 different datasets with various attributes and classes
are used for the comparison. Every algorithm is trained and tested for 30 runs through 5-fold cross-validation. The results
are then compared among each other in terms of the most used measures, such as accuracy, precision, recall, micro-F-
measure, and macro-F-measure. It is demonstrated that EigenClass exhibits the best classification performance for 15
datasets in terms of every metric and, in a pairwise comparison, outperforms the other algorithms for at least 16 datasets in
consideration of each metric. Moreover, the algorithms are also compared through statistical analysis and computational
complexity. Therefore, the achieved results show that EigenClass is a precise and stable algorithm as well as the most

successful algorithm considering the overall classification performances.
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1 Introduction

The field of data classification is of a growing importance
due to the unpredictability, large amount, and complexity of
real-world data which include multi-class predictions in
practical applications [1-3]. The evolution of a new clas-
sification algorithm is an essential and challenging research
topic in the field of machine learning [4-6]. Classification
methods aim to predict a class label of input samples
include a set of attributes [7]. Classification methods
determine class labels of observed input test data according
to training data. In classifying data, various mathematical
distance calculations and intuitive methods are employed,
and expert opinions are considered [8]. Classification
problems with multiple classes and nonlinear class
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constraints with considerable numbers of training data
which lead to computational cost generally require complex
classifiers [9]. In classification methods, a class is assigned
to an observed input test data by performing a learning
process with training data. The learning process is divided
into two categories, i.e. supervised and unsupervised
learning [10]. The supervised classification consists of two
stages. In the first stage, specific attributes are extracted
from training data according to class labels, which aim to
train a classifier model to be able to assign a class label to
test data. The second stage is the prediction phase, classi-
fying test data through a trained model [9, 11, 12].
Classification algorithms can be defined as two types
based on the number of class labels: binary and multi-class
classification. In recent years, the multi-class classification
has been attracting more attention in engineering problems
[13]. Bayesian [14], artificial neural networks (ANN),
support vector machines (SVM) [15], k-Nearest Neigh-
bours (kNN) [16], random forests (RF) [17] algorithms are
commonly used as supervised learning techniques [18, 19].
SVM and k-NN are particularly specified as
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neighbourhood-based algorithms. In general, the term
“nearest” is defined along with the concept of “distance”
among samples in data space [20]. The nearest neighbour
classifier chooses the observed datum according to the
class label of the nearest neighbour. kNN is a well-known
multi-class method applicable to data classification [21].

The selection of distance functions is key to kNN. Using
different functions, such as Euclidean, Mahalanobis, Ham-
ming and Minkowski, provides flexibility and versatility, thus
yields more precise results [11]. SVM based on a statistical
approach is another popular algorithm for binary classification
and regression in a great many areas, such as image classifi-
cation, text categorisation, and bioinformatics [22, 23]. SVM
classifies data samples by constructing a hyperplane in an
N-dimensional data space, in such a way that it attempts to
maximise the margin between the data samples of class labels.
The RF method, constituting many individual tree blocks that
compose a random forest, classifies data samples through
decision trees [17]. Each tree in a random forest produces a
class label prediction, and then class with the highest number
of votes would be the ultimate prediction result. Some indi-
vidual trees might produce inaccurate predictions. The ulti-
mate prediction is likely to be correct, thanks to the employed
multiple trees. The review of the algorithms mentioned above
manifests that the existing classification algorithms have their
benefits and weaknesses depending on the intended applica-
tions. Nevertheless, more successful methods built on a new
efficient basis would prove promising due to the need for the
classification of increasingly diverse data sets.

Eigenvalues, also known as characteristic roots, is a
special value of a linear system, associated with an
eigenvector. It is widely utilised in such common phe-
nomena as machine learning, physics, mathematics, and
engineering. Eigenvalue, able to grasp a key factor, offers
information about the degree of correlation between two
symmetric matrices. Therefore, it has been successfully
exploited in some size reduction processes, such as prin-
cipal component analysis (PCA) [24] and linear discrimi-
nant analysis (LDA) [25], to increase calculation efficiency
and prevent overfitting in high-dimensional data. The
eigenvalue is a scale of a matrix which is attached to
eigenvector providing an axis magnitude. Thus, PCA and
LDA evaluate the covariance of data. Principal components
are obtained in order of significance by ranking eigenval-
ues from the highest to the lowest. A summary matrix can
thus be achieved by multiplying the data with the deter-
mined eigenvector. Although the concept of eigenvalue has
the outstanding efficiency of exploring the correlation in
data analysis, it has not been yet exploited in terms of
classification algorithms. The application of the concept of
eigenvalue to a classification algorithm, which is a novel
approach, can be an encouraging practice.
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In this study, a machine learning algorithm exploiting
the generalised eigenvalue concept, namely eigenvalue
classification (EigenClass) algorithm, has been developed
for both binary and multi-class problems by referring to the
proximity between the test and the training data. The
classification label of the observed test data is determined
by calculating the eigenvalues of each sample in the test
data with respect to the training data. To appreciate the
classification performance of EigenClass, it is compared
with the well-known machine learning algorithms kNN,
Fuzzy kNN [26], RF, and Multi SVM (MSVM). The results
are then compared among each other in terms of the most
used measures, such as accuracy, precision, recall, micro-
F-measure, and macro-F-measure. The proposed Eigen-
Class classifies datasets with higher values in the occur-
rence of 15 datasets more competently than the other
algorithms in view of all the measures. The results
demonstrate that the proposed EigenClass is an outstanding
and useful algorithm for the classification problems.

In the present study, in Sect. 2, the preliminaries and
algorithm steps of the proposed EigenClass are presented,
and some basic notions are supplied. In Sect. 3, a comparison
appreciating the performance of the EigenClass is performed
by comparing it with well-known algorithms. Finally, we
discuss EigenClass and the need for further research.

2 Preliminaries and EigenClass algorithm

The generalised eigenvalue is a handy and versatile math-
ematical tool that provides information about the correlation
of linear transformations. In this section, firstly, some basic
notions related to the EigenClass algorithm are presented.
Throughout this paper, A = [a;] denotes a data matrix
which has order m X n, where m and » stand for the number
of the attributes and the number of the samples in the data
matrix, respectively. A, represents the training matrix
obtained from A, where the last column contains class labels
of the data. A indicates the test matrix obtained from A. A"
symbolises the extracted matrix for r-class of A, where
r=1,2, ..., lis the number of class. A]_ . and A;_ refer
to ith row of A . and A, respectively.

The following definition describes the concept of gen-
eralised eigenvalue utilised for an evolving the EigenClass
algorithm.

Definition 2.1 Let A and B be two matrices, and x be a
nonzero n-dimensional vector. If there exists a scalar A
such that Ax = ABx, then 4 is called generalised eigenvalue
of A according to B or briefly eigenvalue of A according to
B. The vector which contains all eigenvalues of A
according to B is denoted by eig(A, B).
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It must be noted that if A and B be two diagonal matrices
whose diagonal entries differ from zero, then the generalised
eigenvalues A1  therein are real numbers and
eig(A,A) = [1...1]". Throughout this paper, for the matrix
A=la;], A=Y, a; and |A] = [|ay|], where || is
absolute value function. In other words, Y A means the sum
of all the entries of A and that |A| denotes a matrix whose
entries are equal to the absolute values of the entries of A.

Definition 2.2 Let A and B be two diagonal matrices
whose diagonal entries differ from zero. Then,

1

Q(AaB) = Z

is called A‘s quasi-distance to B.

—eig(A, B)
1

We can consider that A will be close B when ¢(A, B) is
close to zero. For example, if A = {2 0} ,B= [2 0},

0 5 0 4
and C = {2 O}, then,

0 eigia.n) = |1

cig(A, B) = {1.125}, cig(4,C) = {;5], 4(A, B) = 0.25,

and ¢(A,C) = 1.5. Therefore, in the present paper, we
accept that A is closer to B than C.

To determine the eigenvalues of a matrix, the matrix
should be in a square form. However, each sample in a
dataset given for classification is generally represented as a
row of a data matrix. To overcome this difficulty, we convert
each sample of the data matrix into a diagonal matrix.

The pseudocode of the EigenClass algorithm

Definition 2.3 Let x = (x1,x2,...,%,) € R". Then, the
diagonal form of x, namely diag(x), as follows:

x 0 - 0
0 x -~ 0
0 0 Xy,

The following pseudocode describes the working princi-
ple of the EigenClass algorithm step by step. Once the
training matrix A, and test matrix A are read (Step 1), a
very small value (0.0001) is assigned instead of zeros (Step
2). The reason for this assignment is the need for nonzero
elements for the calculation of the generalised eigenvalues.
For all r, the r-class matrices Aj ;. are extracted from the
training matrix Ay, (Step 3). For all i, r and ¢, the gener-
alised eigenvalues for diag( Lm-n) and diag(A;_is) are
calculated and then the matrix B” is constructed by
diag(A}_,,)’s quasi-distance values to diag(A; ) (Step
4). The elements in each row of B’ are rearranged in an
ascending rank (Step 5). Recall that minimum values mean
maximum correlation. A column matrix is formed via k-
mean of each ascended row to improve the degree of
proximity (Step 6). In other words, k is the degree of free-
dom by which the algorithm can be tuned. Finally, the
classification label of the samples in the test data is found by
operationalising the row number corresponding to the min-
imum element in the column matrix (Step 7). This way can
determine the class labels of all the samples in the test data.

Step 1. Read a nonempty train matrix A;,.q;, and test matrix A;qs of A

Step 2. For all i and j,
Ifaij—t‘rain =0

a « 0.0001

ij-train
Ifa;j_rese =0
Qjj_tese < 0.0001
Step 3. For all r

S . . .
Obtain training matrices with r-class A7,

Step 4. For all {

Obtain the matrix B! = [bL,] for i*" row of Ay, such that

b;'t = Q(diag(A;—train)' diag(Ai—test))

Step 5. For all i

Obtain ascending-sorted matrix B! of B! to calculate its k-mean

Step 6. For all i

Obtain Ci = [Csil]rx , such that ¢§; = k-mean of B

Step 7. For all i

Obtain the matrix D = [dy;], which denotes the assigned new classes to A,,,. Here, d;; = argmin cl;
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To further increase the intelligibility of the EigenClass
algorithm regarding the pseudocode, a numerical example
is supplied below,

Example 2.1 A data matrix A taken from Balance Scale
dataset [27] is provided below to implement EigenClass. It
has 15 samples with 3 classes (I = 3) which are in the last
column, and each class has 5 samples.

S

I
W WM = = LWWNN M~ WNNDN =
W W N WV A=W WE === 5N W0Ww
—_— = = = 0N NN W= = NN
AW == LD R WD WD R W
L LW N W WM NNDNDN == ===

Step 1

Atain =

W == W= W -
W N WL R = QW= === §&;Ww
_— = = 0NN W= = N =
W = = W NP WNDWND W
L W W W NN == ==

and

2 5 25
Aec =13 3 2 5
3 3 1 4
Step 2 Since no element with zero value exists, there is
no need to apply the procedure in this step.
Step 3 The r-class training matrices belonging to 1-class,
2-class, and 3-class are extracted from the training matrix
Again as given below.
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M 3 1 37
1 2 4 2 4
Atrain_ ’
2 1 1 2
13 1 1 3]
1 3 27
, 212 3
Atrain: ’
2 3 2 4
13 1 3 2]
M 4 1 37
1 5 1 1
Agrain:
2 2 1 1
13 3 1 3]

Step 4  For Al .=[1 3 1 3] and

A =[2 5 2 5], the generalised eigenvalues of

diag(A}_,,) and diag (A|_q) are calculated as follows:
elg (dlag (A } 7train) ’ dlag (Alftest)>
1 000 2 000 0.5
:eig0300 050 0]_105
001 0[’|l00 20 0.6
00 0 3 0 0 05 0.6

Then, bj, of the proximity matrix B' is calculated as
follows:

b{l = q(diag(ALuain)v diag(Al_test))
= 0.5000 + 0.5000 4+ 0.4000 + 0.4000 = 1.8000

The other entries of B! are obtained similarly. Thus,

1.8 04 19 22
B'=124 12 06 24
16 1.8 19 1.8

Step 5 The following matrix B' is achieved by sorting
each row of B! in an ascending rank to compute k-means of
the closest k training data to test data in each row of B'.

04 18 19 22
B'=106 12 24 24
16 1.8 1.8 19

1.3667

Step 6 In the case of k = 3, we obtain C' = | 1.4000

1.7333

via 3-mean of B' such that C}, :70‘4“38“'9: 1.3667,
Cl, = W# = 1.4000, and C}, = 1A6+13As+1A8 — 1.7333.

Step 7 Since the minimum value is 1.3667 in C!, d;; = 1
that is A|_ should belong to the 1-class.
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Table 1 The properties of 20 datasets from UCI

No Name Sample Attribute Class
1 Seeds 210 3
2 Wireless 2000 4
3 Wine 178 13 3
4 Immunotherapy 90 2
5 Cryotherapy 90 2
6 Iris 150 3
7 Breast Cancer Wisconsin 569 30 2
8 Balance Scale 625 4 3
9 Dermatology 366 34 6
10 Haberman’s Survival 306 3 2
11 Hepatitis 155 19 2
12 Teaching 151 5 3
13 Zoo 101 16 7
14 Libras 360 91 15
15 Hayes 132 5 3
16 Vehicle 846 18 4
17 Australian 690 14 2
18 E. coli 336 7 8
19 Musk (Version 2) 6598 168 2
20 Semeion 1593 256 2

3 Appreciating the performance
of EigenClass in comparison with the well-
known algorithms

The proposed EigenClass is compared with the well-known
machine learning algorithms kNN, fuzzy kNN, RF, and
MSVM through various datasets from UCI Machine
Learning Repository [28] (Table 1) to assess their classi-
fication performance. The classification results are con-
ducted via MATLAB R2018b running on a workstation
with I(R) Xeon(R) CPU E5-1620 v4 @ 3.5 GHz, and
64 GB RAM. MATLAB source code of the proposed
EigenClass algorithm is publicly available at: https://www.
mathworks.com/matlabcentral/fileexchange/78462-eigenva
lue-classification-for-machine-learning.

3.1 Comparative classification results

Each algorithm is trained and tested using the K-fold cross-
validation [29]. In K-fold cross-validation, the dataset is
split into K equal-sized subsamples whose samples are
randomly designated. While one subsample is kept as
validating data, the remaining K-1 subsamples are used in
training the algorithm. In K-fold cross-validation, number
of K processes are carried out for every subsample to be
processed as validating data. Therefore, every subsample is

employed only once as validating data, and the whole
dataset is used for both training and validating data. In this
study, 5-fold cross-validation is carried out and thus, the
mean of the results for 5 iterations are recorded. Eventu-
ally, this process is repeated thirty times and their results
are averaged to evaluate the performance measures.
Meanwhile, some control parameters should be set for the
compared algorithms. The number of the nearest neigh-
bours and the distance function are considered as three and
Euclidean distance for kNN, respectively. Similarly, the
number of nearest neighbours is selected as 3 for fuzzy
kNN. The Kernel function for MSVM is preferred as a
radial basis function. The numbers of trees for the RF are
set to be 60. Finally, k value used for calculation of k-mean
is set to be 3 for the EigenClass algorithm.

The classification results of the algorithms are then
compared among each other in terms of the most utilised
measures, such as accuracy, precision, recall, micro-F-
measure, and macro-F-measure [30] as defined below,

1 Z TP; + TN;
A = 1
Y =0 ; TP, + TN, + FP; + FN; (m)
1<& TP
Precision = — Z —_— (2)
Q£ TP; + FP,
1< TP
Recall=—) —— L 3
e Q;TPiJrFN,- ®)
1 Z 2 x TP
Macro - F measure = — x (4)
Q g 2 X TPI + FP, + FN,
25°¢ TP
Micro - F measure = o Z’Q:I 5
2 Zi:l TP; + Zi:l FP; + Ei:l EN;
(5)

where TP;, TN;, FP;, and FN; are the number of true pos-
itives, true negatives, false positives, and false negatives
for the label i, respectively, and Q is the total number of the
class label.

Table 2 shows the classification results computed by
kNN, Fuzzy kNN, MSVM, RF, and the proposed Eigen-
Class algorithm through the 20 datasets presented in
Table 1 concerning the measures, accuracy, precision,
recall, micro-F-measure, and macro-F-measure with stan-
dard deviation (SD). The SD is an important metric that
apprises the stability of an algorithm. It is calculated by the
square root of the mean square difference between each
solution and the average of the solutions found at each run.
Since Table 2 includes large data, it is difficult to trace the
results and interpret the performances of the algorithms. To
facilitate this, Tables 3 and 4, in which the results of
Table 2 are compiled by ranking the number of the best
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Table 2 The classification results regarding the averages of accuracy, precision, recall, micro-F-measure, and macro-F-measure (%)

Dataset Methods Accuracy £+ SD  Precision &+ SD Recall = SD  Micro-F- Macro-F-
measure £+ SD measure £+ SD
Seeds kNN 95.68 * 0.66 93.94 + 0.90 93.52 + 0.98 93.48 + 0.98 93.52 + 0.98
Fuzzy kNN 93.87 £ 0.95 91.28 £+ 1.41 90.81 £ 142 90.74 + 1.44 90.81 £+ 1.42
MSVM 94.25 + 0.38 91.83 £ 0.67 91.38 £ 0.57 91.34 £ 0.60 91.38 £ 0.57
RF 95.52 £ 0.53 93.80 £+ 0.77 93.29 £+ 0.79 93.26 £ 0.80 93.29 £ 0.79
EigenClass 95.05 £ 0.01 92.86 £ 0.01 92.57 £ 0.01 92.51 £ 0.01 92.57 £ 0.01
Wireless kNN 99.08 + 0.07 98.19 £+ 0.14 98.17 £ 0.14 98.17 £ 0.14 98.17 £ 0.14
Fuzzy kNN  99.20 + 0.07 98.42 + 0.14 98.40 +£ 0.15 98.40 + 0.15 98.40 £ 0.15
MSVM 98.95 £ 0.13 97.92 £+ 0.26 97.89 £ 0.27 97.89 4+ 0.27 97.89 £ 0.27
RF 99.13 £ 0.10 98.28 £ 0.21 98.25 £ 0.21 98.25 £ 0.21 98.25 £+ 0.21
EigenClass 99.37 £ 0.05 98.77 + 0.04 98.75 £ 0.03 98.75 + 0.07 98.75 £ 0.08
Wine kNN 96.93 £ 0.54 95.61 £ 0.76 96.15 £ 0.66 95.56 £ 0.80 95.39 £+ 0.81
Fuzzy kNN 83.33 £+ 0.63 75.14 £ 1.13 7413 £ 1.07 7397 +£ 1.07 74.99 £ 0.95
MSVM 97.19 £ 0.51 95.97 £+ 0.80 96.05 £ 0.75 95.83 £ 0.78 95.78 £ 0.77
RF 98.43 £+ 0.39 97.68 £+ 0.52 9791 £ 0.60 97.69 £+ 0.57 97.64 £ 0.58
EigenClass 99.17 £ 0.01 98.85 £+ 0.01 98.96 + 0.01 98.85 + 0.01 98.75 £ 0.01
Immunotherapy kNN 70.54 + 2.16 58.16 £ 3.85 5721 £4.56 63.02 +4.78 70.54 £ 2.16
Fuzzy kNN 61.16 £ 3.13 44.84 + 4.02 43.99 £ 3.47 64.17 £+ 3.66 61.16 £ 3.13
MSVM 79.17 £ 2.11 75.15 £ 5.05 55.22 £ 3.34 78.09 £+ 2.75 79.17 £ 2.11
RF 84.94 + 2.80 81.33 £ 5.96 71.29 £ 4.01 7641 = 4.19 84.94 £ 2.80
EigenClass 81.37 £+ 0.02 81.14 + 0.08 57.28 £ 0.03 77.80 &+ 0.06 81.37 + 0.02
Cryotherapy kNN 88.58 + 2.19 89.43 + 2.23 88.34 +£ 2.15 88.34 +£2.23 88.58 + 2.19
Fuzzy kNN 90.04 £ 2.33 91.23 £ 1.99 89.93 £2.39 89.80 + 2.45 90.04 £+ 2.33
MSVM 86.67 + 2.98 87.94 + 2.56 86.86 + 3.14 86.49 + 3.11 86.67 + 2.98
RF 91.04 £ 2.66 91.93 £+ 2.07 91.23 +£2.68 90.93 £ 2.80 91.04 £+ 2.66
EigenClass 93.31 £ 0.04 94.20 + 0.04 93.11 £ 0.05 93.17 £ 0.05 93.31 + 0.04
Iris KNN 96.27 £ 0.52 94.74 £ 0.79 94.40 £ 0.78 94.38 + 0.78 94.40 £ 0.78
Fuzzy kNN 97.16 £ 0.37 96.01 £ 0.58 95.73 £ 0.56 95.72 £+ 0.56 95.73 £ 0.56
MSVM 97.51 £ 0.52 96.54 + 0.82 96.27 £ 0.78 96.25 + 0.78 96.27 £ 0.78
RF 96.71 £ 0.52 95.45 £+ 0.74 95.07 £ 0.78 95.05 4+ 0.79 95.07 £ 0.78
EigenClass 97.98 £ 0.01 96.80 £+ 0.01 96.47 £ 0.01 96.45 + 0.01 96.47 £ 0.01
Breast Cancer Wisconsin kNN 95.06 £ 0.40 95.04 £+ 0.42 9443 £ 049 94.68 £ 0.44 95.06 £ 0.40
Fuzzy kNN 91.39 £ 0.49 91.36 £ 0.62 90.28 £ 0.49 90.68 £ 0.53 91.39 £+ 0.49
MSVM 95.60 £ 0.48 95.68 £+ 0.51 94.96 £+ 0.54 95.26 £+ 0.52 95.60 £ 0.48
RF 96.01 £+ 0.48 95.96 + 0.56 95.57 £ 048 95.71 £ 0.51 96.01 £ 0.48
EigenClass 97.19 % 0.01 96.86 + 0.01 96.78 £ 0.01 96.75 = 0.01 96.78 £ 0.01
Balance Scale kNN 85.56 + 0.65 56.81 £+ 0.38 56.67 £ 0.70 84.93 + 0.75 78.34 £ 0.97
Fuzzy kNN 85.84 + 0.20 58.81 + 0.34 56.98 + 0.22 85.51 £ 0.30 78.77 £ 0.30
MSVM 84.45 £+ 0.01 83.28 £ 0.28 61.74 £ 0.04 85.65 £ 0.16 81.68 £ 0.01
RF 89.44 + 0.40 58.98 + 0.32 60.88 £+ 0.43 89.82 £+ 0.45 84.16 + 0.60
EigenClass 91.74 £ 0.01 87.88 £ 0.13 63.37 £ 0.02 92.10 + 0.01 87.60 £ 0.03
Dermatology kNN 98.29 + 0.25 94.80 £+ 0.74 94.65 £ 0.84 94.46 £+ 0.79 94.86 £ 0.76
Fuzzy kNN 96.33 £ 0.33 87.99 + 1.25 88.06 £ 0.97 87.42 £+ 1.06 88.99 + 0.98
MSVM 97.24 £ 0.15 92.15 £ 0.53 89.24 £+ 0.52 89.68 £+ 0.58 91.73 £ 045
RF 98.84 + 0.16 96.36 £ 0.51 96.23 £+ 0.66 96.04 £+ 0.61 96.53 £ 0.49
EigenClass 99.20 £ 0.01 97.62 £+ 0.02 97.14 £ 0.02 97.22 + 0.02 97.60 £ 0.01
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Table 2 (continued)

Dataset Methods Accuracy £+ SD  Precision + SD Recall = SD  Micro-F- Macro-F-
measure £+ SD measure £+ SD
Haberman’s Survival kNN 65.07 £ 1.12 54.84 £ 1.45 5492 £ 1.64 54.58 +1.52 65.07 + 1.12
Fuzzy kNN 68.20 £+ 1.74 59.08 £+ 2.54 58.98 £ 2.63 58.71 +2.42 68.20 + 1.74
MSVM 72.85 £ 0.88 63.16 £ 8.70 51.14 £ 139 62.21 £ 5.38 72.85 £+ 0.88
RF 68.36 £ 1.43 57.62 £ 2.26 56.21 £1.32 56.23 + 1.68 68.36 &+ 1.43
EigenClass 76.60 £ 0.03 70.06 + 0.04 61.96 £ 0.02 63.67 £ 0.02 76.60 + 0.03
Hepatitis kNN 57.29 £ 1.21 56.64 £ 1.70 56.38 £ 1.25 56.00 + 1.49 57.29 £ 1.21
Fuzzy kNN 57.61 £ 3.73 57.55 £ 4.03 5741 £3.89 57.02 + 3.85 57.61 £+ 3.73
MSVM 62.97 £ 247 63.11 £ 2.90 61.66 £ 2.50 60.99 + 2.72 62.97 + 2.47
RF 62.00 £+ 2.64 62.04 £ 293 61.24 £ 2.66 60.86 + 2.68 62.00 £+ 2.64
EigenClass 64.06 £ 0.02 64.73 £ 0.03 62.82 £ 0.03 62.29 + 0.03 64.06 £ 0.03
Teaching kNN 74.33 £ 1.50 62.22 £ 231 61.59 £226 61.10 & 2.06 61.49 £+ 2.25
Fuzzy kNN 7227 £ 1.73 59.87 £ 3.18 5833 £2.60 58.11 + 2.85 58.41 £+ 2.59
MSVM 67.77 £ 1.45 53.69 £ 2.20 51.78 £2.20 51.06 + 2.33 51.65 £+ 2.18
RF 75.38 + 1.87 64.22 £ 3.03 62.96 £ 2.78 62.61 £ 2.81 63.07 £+ 2.80
EigenClass 75.74 £ 0.02 64.96 * 0.04 63.52 £ 0.03 63.12 £ 0.03 63.61 + 0.03
Zoo kNN 97.57 £ 0.31 88.36 £ 2.73 83.58 £2.50 91.84 + 1.10 91.67 £+ 1.05
Fuzzy kNN 98.87 £+ 0.23 95.05 £ 1.25 90.26 £ 1.16 96.16 + 1.73 96.16 £ 0.70
MSVM 98.56 £ 0.46 92.57 £ 2.01 90.32 £2.76 94.99 + 1.30 95.06 £+ 1.59
RF 98.57 £ 0.45 92.51 £ 2.39 88.00 £ 3.79 9533 £ 1.56 95.12 £+ 1.46
EigenClass  99.33 £ 0.46 96.53 + 0.41 93.67 £ 0.35 97.87 £ 0.42 97.72 + 0.42
Libras kNN 97.17 £ 0.09 81.97 £ 0.54 78.79 £ 0.67 78.43 £ 0.75 78.77 £+ 0.68
Fuzzy kNN 97.15 £ 0.18 81.81 £ 1.12 78.64 £ 1.27 7829 £ 1.23 78.65 + 1.33
MSVM 93.37 £ 0.14 57.98 £ 1.67 5047 £ 122 5229 + 1.08 50.25 + 1.07
RF 96.23 £+ 0.28 75.27 + 1.85 71.84 £2.04 71.87 £ 2.06 71.72 £+ 2.08
EigenClass 97.52 £ 0.01 82.83 + 0.06 79.07 £ 0.07 79.46 £ 0.07 79.39 £ 0.08
Hayes kNN 75.97 £ 2.99 71.10 £ 3.78 63.97 £ 422 6552 +4.05 63.96 + 4.48
Fuzzy kNN 59.38 £ 2.13 37.44 £ 4.82 3555 £294 39.12 +2.87 39.07 £ 3.20
MSVM 7438 £ 1.17 66.64 £ 1.77 62.63 £ 149 63.35 + 1.53 61.57 £ 1.75
RF 87.42 + 1.68 84.70 + 2.14 83.62 £ 2.15 83.40 £ 2.30 81.13 + 2.52
EigenClass 76.05 £ 0.02 69.39 £ 0.05 59.66 £ 0.05 60.28 £ 0.03 64.08 £+ 0.04
Vehicle kNN 84.45 £+ 0.53 68.76 £ 1.10 69.09 £ 1.07 68.80 &+ 1.07 68.90 + 1.06
Fuzzy kNN 81.91 + 0.44 63.51 £ 0.86 64.17 £ 0.88 63.67 + 0.85 63.82 £+ 0.89
MSVM 87.09 £ 0.44 73.30 £ 0.89 74.47 £ 0.88 73.55 £ 0.89 74.18 £+ 0.89
RF 89.10 £+ 0.23 78.43 + 0.50 78.43 £ 0.47 78.24 + 0.47 78.21 + 0.47
EigenClass 83.31 £ 0.01 65.08 £ 0.01 66.85 £ 0.01 65.41 £ 0.01 66.63 £+ 0.01
Australian kNN 79.55 £ 0.84 79.49 £ 0.86 79.20 £ 0.85 79.23 £ 0.84 79.55 + 0.84
Fuzzy kNN 65.69 £ 0.58 65.29 £ 0.63 64.92 £ 0.59 64.92 + 0.59 65.69 £+ 0.58
MSVM 75.08 £+ 4.63 78.32 + 5.36 73.94 £ 449 7246 £ 548 75.08 £+ 4.63
RF 83.01 £ 0.55 85.26 + 0.53 81.55 £ 0.62 82.06 &+ 0.58 83.01 + 0.55
EigenClass 84.43 £ 0.01 86.51 £ 0.01 82.46 + 0.01 82.95 + 0.02 83.84 £+ 0.01
E. coli kNN 9441 £ 0.34 72.02 £ 242 67.76 £ 142 76.85 £ 1.66 80.13 £ 1.34
Fuzzy kNN  94.60 £ 0.36 75.28 £ 2.12 7122 £ 1.12 79.04 + 1.35 81.10 £ 1.12
MSVM 93.85 £ 0.18 77.61 £+ 2.56 50.22 £ 1.57 76.56 + 2.12 79.28 £ 0.55
RF 94.69 £+ 0.32 74.46 + 1.96 71.25 £ 2.37 7870 £ 1.47 81.01 £ 1.10
EigenClass 95.72 £ 0.28 83.53 + 0.21 71.87 £ 0.20 82.64 £ 0.22 85.46 + 0.24
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Table 2 (continued)

Dataset Methods Accuracy £+ SD  Precision + SD Recall = SD  Micro-F- Macro-F-
measure £+ SD measure £+ SD
Musk (Version 2) kNN 94.75 £ 0.08 89.12 £ 0.21 91.48 £ 0.17 90.22 £+ 0.15 94.75 + 0.09
Fuzzy kNN  95.32 + 0.11 90.28 £+ 0.32 9238 £ 0.17 91.26 + 0.18 95.32 £ 0.11
MSVM 73.16 £ 3.51 60.49 £ 2.64 65.49 £ 3.78 60.73 + 3.36 73.16 £ 3.51
RF 96.21 £ 0.01 96.75 £ 0.03 92.01 £ 0.02 94.03 + 0.08 96.18 £ 0.01
EigenClass 97.69 £ 0.11 98.00 + 0.09 93.09 £ 0.34 95.33 £+ 0.23 97.69 + 0.10
Semeion kNN 97.95 + 0.24 97.18 + 0.54 91.15 £ 1.04 93.80 £ 0.80 97.95 + 0.25
Fuzzy kNN 97.44 £ 0.31 96.21 £ 0.62 89.13 £ 1.21 92.19 + 1.04 97.44 £+ 0.31
MSVM 97.75 £ 0.21 94.79 £ 0.71 92.51 £ 1.39 93.52 + 0.66 97.75 £ 0.21
RF 96.36 + 0.34 96.75 + 0.45 82.49 + 1.61 87.87 + 1.33 96.36 + 0.33
EigenClass 96.72 + 0.01 96.97 £+ 0.01 90.99 £+ 0.01 9291 £ 0.01 96.74 £+ 0.01
;Z?:i:suﬁs?;niln;g Ezih(;f] the Methods Accuracy  Precision  Recall =~ Micro-F-measure =~ Macro-F-measure ~ Total rank
compared among each other KNN 2 ) 1 ) ) 9
Fuzzy kNN - - - - - -
MSVM - - 1 - 2
RF 3 3 3 2 3 14
EigenClass 15 15 15 15 15 75
Zzgie“su}i:?;intgw r;u;rllggrrit(;lfrslsle Comparison Accuracy Precision Recall Micro-F-measure Macro-F-measure
compared versus each other EigenClass versus kNN 17 16 16 16 17
EigenClass versus Fuzzy kNN 18 20 20 20 19
EigenClass versus MSVM 17 19 17 16 18
EigenClass versus RF 16 16 16 17 16

results for every algorithm, are prepared. While Table 3 is
composed of the ranking numbers of the best results for all
the algorithms compared among each other, Table 4
includes the ranking numbers of the best results for two
algorithms versus each other in pairwise comparisons. It
can be understood from Table 3 that EigenClass outper-
forms the other algorithms for 15 datasets, while it pro-
duces close results (see also Table 2) for the remaining 5
datasets in view of each metric. Hence, EigenClass clas-
sifies datasets with the best results of the total number of 75
for all the measures. Conversely, the other algorithms kNN,
Fuzzy kNN, MSVM, and RF classify the datasets with the
total number of 9, 0, 2, and 14, respectively. Besides, it is
clear from Table 4 that EigenClass outperforms the other
algorithms for at least 16 datasets in every metric in the
pairwise comparisons. Therefore, EigenClass is the most
successful algorithm considering the overall classification

@ Springer

performance. The comparison of the algorithms in terms of
the SD yields that EigenClass is the most stable algorithms
as well.

Note that the classification results in the literature show
that a classification algorithm might not achieve the most
successful results for all dataset. It can be inferred that the
classification algorithms proposed in the literature might be
problem-dependent, considering their classification abili-
ties [31, 32].

3.2 Statistical evaluation

In this subsection, Friedman test [33] and the Nemenyi post
hoc test [34] are exploited to assess whether the overall
differences among the measures accuracy, precision, recall,
micro-F-measure, and macro-F-measure are statistically
significant. Friedman test is a nonparametric tool to test
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multiple hypotheses and Nemenyi test is one of the post = measure values of the studied methods are significantly
hoc tests widely used to compare the classifiers simulta- different (28.52 > 9.49, 31.48 >9.49, 25.36>9.49,
neously. Friedman test ranks the algorithms based on their ~ 27.08 > 9.49, and 31.08 > 9.49, respectively). Now that
performances for each dataset separately; hence, the rank  the null hypothesis is rejected, we can proceed with a post
of 1 is assigned to the best performing algorithm, the rank  hoc test. The Nemenyi test [33] can be used when all
of 2 to second-best, etc. It assigns average ranks in the case  classifiers are compared to each other [35].
of obtaining an equal rank. Then, Friedman test compares The critical value in our experiments with k =5 and
the average ranks of the algorithms. Next, it calculates o =10.05 is CDggs = 1.364. As a result, the accuracy,
according to y# distribution with k — 1 degree of freedom  precision, recall, micro-F-measure, and macro-F-measure
(k is the number of algorithms). To detect a statistically of the proposed EigenClass method is significantly differ-
significant difference in the performance, a post hoc test  ent from MSVM, kNN, and Fuzzy kNN methods, while it
should be used to detect the algorithms which cause these ~ is not significantly different from RF method. Figure 1
differences. Nemenyi test is widely used for this case. This  illustrates the statistical comparison of the methods con-
test shows that their performance is remarkably different in ~ sidered in our experiments based on the Nemenyi test.
the event that the average ranks of the two algorithms are
different from some critical distances. 3.3 Evaluation of processing time

We first calculate the average rank of each algorithm and computational complexity
considered in our experiments with k = 5 and n = 20 since
the total number of the methods is 5 and the total number ~ To further compare the algorithms according to processing
of the datasets is 20. If the accuracy, precision, recall,  time, Table 5 provides the mean processing time data for
micro-F-measure, and macro-F-measure values of the  the 20 UCI datasets at thirty runs. As can be inferred from
Friedman test statistic are X}zr = 28.52, X}zr = 3148, Table 6, FEigenClass, in general, seems to operate slightly
73 =25.36, 72 =27.08, and y2 =31.08, respectively, slower than the other algorithms. The underlying cause of
this higher processing time depends on the MATLAB
operation. MATLAB does not allow for parallel computing
for multiparameter eig(A, B) command set allows for only
a single parameter, i.e. eig(A) [36]. We believe that the
processing time can be further decreased if the parallel

with 4(k — 1) degrees of freedom and the critical value for
the Friedman test given for k =5 and n =20 is 9.49 at a
significance level of o = 0.05, we can conclude that the
accuracy, precision, recall, micro-F-measure, and macro-F-

Critical Distance =1.364 Critical Distance =1.364
1 2 3 4 5 1 2 3 4 5
EigenClass (1 .60)—,; — Fuzzy kNN (3.80) EigenClass (1 .45)/| ——— Fuzzy kNN (3.90)
RF (2.45) MSVM (3.60) RF (2.60) kNN (3.60)
kNN (3.55) MSVM (345)———
(a) (b)
Critical Distance =1.364 Critical Distance =1.364
1 2 3 4 5 1 2 3 4 5
EigenClass (1.65)4'7 — Fuzzy kNN (3.80) EigenClass (1,55)—'7 —— Fuzzy kNN (3.80)
RF (2.55) MSVM (3.55) RF (2.65) kNN (3.60)
kNN (345) ——————— MSVM 3.40)——m
(c) (d
Critical Distance =1.364
1 2 3 4 5
EigenClass (1.50)J7 ——— Fuzzy kNN (3.85)
RF (2.50) kNN (3.60)
MSVM (3.55)
()

Fig. 1 The critical diagrams for the five measures [(a) Accuracy, (b) Precision, (c) Recall, (d) Micro-F-measure, (e) Macro-F-measure]: the
results from the Nemenyi post hoc test at 0.05 significance level and average rank scores from Friedman Test
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Table 5 Average processing

time for the 20 UCI datasets (in Dataset kNN Fuzzy KNN MSVM RF EigenClass
seconds) Seeds 0.20 0.01 0.28 1.66 0.07
Wireless 0.32 0.04 1.40 13.32 5.34
Wine 0.05 0.01 0.61 1.23 0.06
Immunotherapy 0.02 0.01 0.50 0.66 0.01
Cryotherapy 0.02 0.01 0.32 0.65 0.01
Iris 0.03 0.01 0.09 1.05 0.02
Breast Cancer Wisconsin 0.10 0.01 4.53 3.80 1.23
Balance Scale 0.10 0.01 0.31 4.32 0.37
Dermatology 0.07 0.01 0.55 247 0.62
Haberman’s survival 0.05 0.01 0.49 2.10 0.09
Hepatitis 0.03 0.01 1.45 1.09 0.06
Teaching 0.03 0.01 0.25 1.08 0.03
Zoo 0.02 0.01 0.27 0.74 0.02
Libras 0.06 0.01 2.86 2.71 0.74
Hayes 0.03 0.01 0.14 0.96 0.03
Vehicle 0.14 0.01 7.62 6.12 1.44
Australian 0.12 0.01 741 4.75 0.91
E. coli 0.05 0.01 0.81 2.36 0.13
Musk (Version 2) 8.00 3.50 98.90 47.30 153.70
Semeion 0.78 0.28 0.56 10.81 59.36

Table 6 Computational complexity of the algorithms

Method Computational complexity
kNN [39] O(nlogk)

Fuzzy kNN [40] O(n? log(k))

MSVM with Kernel [41] o(m?)

RF [42] O(Mmnlogn)

EigenClass O(m x n)

k, number of neighbours; M, number of trees

computing property is activated for the multiparameter
command and by optimising the coding of the algorithm in
future works. Nevertheless, EigenClass computes the
classification tasks under 1 s for 15 datasets. The pro-
cessing time of an algorithm should be independently
evaluated in consideration of the computational complexity
based on big O notation [37, 38]. From the pseudocode of
the EigenClass algorithm, the computational complexities
are O(m x n) for Step 2, O(n x I) for Steps 3—-4, and O(n)
for Steps 5-7 for each, where m and n are the numbers of
attributes and samples, respectively. Because m x n is
higher than n x [, the general computational complexity is
O(m x n) in terms of big O notation. The computational
complexities of the compared algorithms are given in
Table 6. Therefore, EigenClass has the second lowest

@ Springer

computational complexity together with kNN after Fuzzy
kNN.

In conclusion, the developed EigenClass algorithm is
generally superior to the other existing well-known algo-
rithms in view of the accuracy, precision, recall, micro-F-
measure, and macro-F-measure measures. Moreover, it
seems that EigenClass suffers from two minor disadvan-
tages. The one is, as mentioned above, to assign a very
small value (i.e. 0.0001) instead of O (zero) entries,
resulting in a modification of the original dataset that may
affect the performance of the algorithm. That is why
EigenClass is not as successful for Hayes and Semeion
datasets as the other algorithms. Note that Semeion dataset
particularly consists of binary data. The second is related to
the processing time that tends to increase when the number
of samples and attributes of the dataset grows higher.

4 Conclusion

In the present study, a novel machine learning algorithm,
namely EigenClass, which is built on the concept of
eigenvalue, has been proposed for the classification prob-
lems. EigenClass is based on eigenvalue’s notable prox-
imity evaluation capability. Classification performance of
EigenClass is evaluated through an effective comparison
with several proven machine learning algorithms, i.e. kNN,
fuzzy kNN, RF, and MSVM. The algorithms are trained
and tested for 30 runs using 5-fold cross-validation over the
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most frequently utilised 20 datasets. The results are then
evaluated using several well-known measures, such as
accuracy, precision, recall, micro-F-measure, and macro-F-
measure. The EigenClass algorithm more accurately clas-
sifies most of the evaluated datasets. To exemplify, it yields
the best results in the occurrence of 15 datasets in terms of
every metric when each is compared with the other and in
at least 16 datasets for each metric in a pairwise compar-
ison. Statistical analyses and computational complexity are
performed to further examine the precision and processing
time of the algorithms by comparing them with the others.
Hence, EigenClass generally outperforms the algorithms in
the comparison in view of the results. Therefore, this study
is the first to develop an eigenvalue-based machine learn-
ing algorithm, which is accurate and efficient. The
achieved results intended for some classification problems
are sufficient to prove the success of EigenClass though it
can be further improved by optimising the steps and coding
of the algorithm.
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