
ORIGINAL ARTICLE

A precise and stable machine learning algorithm: eigenvalue
classification (EigenClass)

Uğur Erkan1

Received: 25 October 2019 / Accepted: 3 September 2020
� Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
In this study, a precise and efficient eigenvalue-based machine learning algorithm, particularly denoted as Eigenvalue

Classification (EigenClass) algorithm, has been presented to deal with classification problems. The EigenClass algorithm is

constructed by exploiting an eigenvalue-based proximity evaluation. To appreciate the classification performance of

EigenClass, it is compared with the well-known algorithms, such as k-nearest neighbours, fuzzy k-nearest neighbours,

random forest (RF) and multi-support vector machines. Number of 20 different datasets with various attributes and classes

are used for the comparison. Every algorithm is trained and tested for 30 runs through 5-fold cross-validation. The results

are then compared among each other in terms of the most used measures, such as accuracy, precision, recall, micro-F-

measure, and macro-F-measure. It is demonstrated that EigenClass exhibits the best classification performance for 15

datasets in terms of every metric and, in a pairwise comparison, outperforms the other algorithms for at least 16 datasets in

consideration of each metric. Moreover, the algorithms are also compared through statistical analysis and computational

complexity. Therefore, the achieved results show that EigenClass is a precise and stable algorithm as well as the most

successful algorithm considering the overall classification performances.

Keywords Data classification � Eigenvalues � Learning algorithm � Machine learning � Supervised learning

1 Introduction

The field of data classification is of a growing importance

due to the unpredictability, large amount, and complexity of

real-world data which include multi-class predictions in

practical applications [1–3]. The evolution of a new clas-

sification algorithm is an essential and challenging research

topic in the field of machine learning [4–6]. Classification

methods aim to predict a class label of input samples

include a set of attributes [7]. Classification methods

determine class labels of observed input test data according

to training data. In classifying data, various mathematical

distance calculations and intuitive methods are employed,

and expert opinions are considered [8]. Classification

problems with multiple classes and nonlinear class

constraints with considerable numbers of training data

which lead to computational cost generally require complex

classifiers [9]. In classification methods, a class is assigned

to an observed input test data by performing a learning

process with training data. The learning process is divided

into two categories, i.e. supervised and unsupervised

learning [10]. The supervised classification consists of two

stages. In the first stage, specific attributes are extracted

from training data according to class labels, which aim to

train a classifier model to be able to assign a class label to

test data. The second stage is the prediction phase, classi-

fying test data through a trained model [9, 11, 12].

Classification algorithms can be defined as two types

based on the number of class labels: binary and multi-class

classification. In recent years, the multi-class classification

has been attracting more attention in engineering problems

[13]. Bayesian [14], artificial neural networks (ANN),

support vector machines (SVM) [15], k-Nearest Neigh-

bours (kNN) [16], random forests (RF) [17] algorithms are

commonly used as supervised learning techniques [18, 19].

SVM and k-NN are particularly specified as

& Uğur Erkan

ugurerkan@kmu.edu.tr

1 Department of Computer Engineering, Engineering Faculty,

Karamanoğlu Mehmetbey University, 70200 Karaman,

Turkey

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-020-05343-2(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-2481-0230
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-05343-2&domain=pdf
https://doi.org/10.1007/s00521-020-05343-2

neighbourhood-based algorithms. In general, the term

‘‘nearest’’ is defined along with the concept of ‘‘distance’’

among samples in data space [20]. The nearest neighbour

classifier chooses the observed datum according to the

class label of the nearest neighbour. kNN is a well-known

multi-class method applicable to data classification [21].

The selection of distance functions is key to kNN. Using

different functions, such as Euclidean, Mahalanobis, Ham-

ming andMinkowski, provides flexibility and versatility, thus

yields more precise results [11]. SVM based on a statistical

approach is another popular algorithm for binary classification

and regression in a great many areas, such as image classifi-

cation, text categorisation, and bioinformatics [22, 23]. SVM

classifies data samples by constructing a hyperplane in an

N-dimensional data space, in such a way that it attempts to

maximise themargin between the data samples of class labels.

The RFmethod, constituting many individual tree blocks that

compose a random forest, classifies data samples through

decision trees [17]. Each tree in a random forest produces a

class label prediction, and then class with the highest number

of votes would be the ultimate prediction result. Some indi-

vidual trees might produce inaccurate predictions. The ulti-

mate prediction is likely to be correct, thanks to the employed

multiple trees. The review of the algorithmsmentioned above

manifests that the existing classification algorithms have their

benefits and weaknesses depending on the intended applica-

tions. Nevertheless, more successful methods built on a new

efficient basis would prove promising due to the need for the

classification of increasingly diverse data sets.

Eigenvalues, also known as characteristic roots, is a

special value of a linear system, associated with an

eigenvector. It is widely utilised in such common phe-

nomena as machine learning, physics, mathematics, and

engineering. Eigenvalue, able to grasp a key factor, offers

information about the degree of correlation between two

symmetric matrices. Therefore, it has been successfully

exploited in some size reduction processes, such as prin-

cipal component analysis (PCA) [24] and linear discrimi-

nant analysis (LDA) [25], to increase calculation efficiency

and prevent overfitting in high-dimensional data. The

eigenvalue is a scale of a matrix which is attached to

eigenvector providing an axis magnitude. Thus, PCA and

LDA evaluate the covariance of data. Principal components

are obtained in order of significance by ranking eigenval-

ues from the highest to the lowest. A summary matrix can

thus be achieved by multiplying the data with the deter-

mined eigenvector. Although the concept of eigenvalue has

the outstanding efficiency of exploring the correlation in

data analysis, it has not been yet exploited in terms of

classification algorithms. The application of the concept of

eigenvalue to a classification algorithm, which is a novel

approach, can be an encouraging practice.

In this study, a machine learning algorithm exploiting

the generalised eigenvalue concept, namely eigenvalue

classification (EigenClass) algorithm, has been developed

for both binary and multi-class problems by referring to the

proximity between the test and the training data. The

classification label of the observed test data is determined

by calculating the eigenvalues of each sample in the test

data with respect to the training data. To appreciate the

classification performance of EigenClass, it is compared

with the well-known machine learning algorithms kNN,

Fuzzy kNN [26], RF, and Multi SVM (MSVM). The results

are then compared among each other in terms of the most

used measures, such as accuracy, precision, recall, micro-

F-measure, and macro-F-measure. The proposed Eigen-

Class classifies datasets with higher values in the occur-

rence of 15 datasets more competently than the other

algorithms in view of all the measures. The results

demonstrate that the proposed EigenClass is an outstanding

and useful algorithm for the classification problems.

In the present study, in Sect. 2, the preliminaries and

algorithm steps of the proposed EigenClass are presented,

and some basic notions are supplied. In Sect. 3, a comparison

appreciating the performance of the EigenClass is performed

by comparing it with well-known algorithms. Finally, we

discuss EigenClass and the need for further research.

2 Preliminaries and EigenClass algorithm

The generalised eigenvalue is a handy and versatile math-

ematical tool that provides information about the correlation

of linear transformations. In this section, firstly, some basic

notions related to the EigenClass algorithm are presented.

Throughout this paper, A ¼ aij
� �

denotes a data matrix

which has order m� n, where m and n stand for the number

of the attributes and the number of the samples in the data

matrix, respectively. Atrain represents the training matrix

obtained from A, where the last column contains class labels

of the data. Atest indicates the test matrix obtained from A. Ar

symbolises the extracted matrix for r-class of A, where

r = 1, 2,…, l is the number of class. Ar
i�train and Ai�test refer

to ith row of Ar
train and Atest, respectively.

The following definition describes the concept of gen-

eralised eigenvalue utilised for an evolving the EigenClass

algorithm.

Definition 2.1 Let A and B be two matrices, and x be a

nonzero n-dimensional vector. If there exists a scalar k
such that Ax ¼ kBx, then k is called generalised eigenvalue

of A according to B or briefly eigenvalue of A according to

B. The vector which contains all eigenvalues of A

according to B is denoted by eig A;Bð Þ.

Neural Computing and Applications

123

It must be noted that if A and B be two diagonal matrices

whose diagonal entries differ from zero, then the generalised

eigenvalues k therein are real numbers and

eig A;Að Þ ¼ 1. . .1½ �T . Throughout this paper, for the matrix

A ¼ aij
� �

,
P

A ¼
P

i;j aij and Aj j ¼ aij
�� ��� �

, where :j j is

absolute value function. In other words,
P

Ameans the sum

of all the entries of A and that Aj j denotes a matrix whose

entries are equal to the absolute values of the entries of A.

Definition 2.2 Let A and B be two diagonal matrices

whose diagonal entries differ from zero. Then,

q A;Bð Þ ¼
X 1

..

.

1

2

4

3

5� eig A;Bð Þ

������

������

is called A‘s quasi-distance to B.

We can consider that A will be close B when q A;Bð Þ is

close to zero. For example, if A ¼ 2 0

0 5

� �
, B ¼ 2 0

0 4

� �
,

and C ¼ 2 0

0 2

� �
, then, eig A;Að Þ ¼ 1

1

� �
,

eig A;Bð Þ ¼ 1

1:25

� �
, eig A;Cð Þ ¼ 1

2:5

� �
, q A;Bð Þ ¼ 0:25,

and q A;Cð Þ ¼ 1:5. Therefore, in the present paper, we

accept that A is closer to B than C.

To determine the eigenvalues of a matrix, the matrix

should be in a square form. However, each sample in a

dataset given for classification is generally represented as a

row of a data matrix. To overcome this difficulty, we convert

each sample of the data matrix into a diagonal matrix.

Definition 2.3 Let x ¼ x1; x2; . . .; xnð Þ 2 Rn. Then, the

diagonal form of x, namely diag xð Þ, as follows:
x1 0 � � � 0

0 x2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � xn

2

6664

3

7775

The following pseudocode describes the working princi-

ple of the EigenClass algorithm step by step. Once the

training matrix Atrain and test matrix Atest are read (Step 1), a

very small value (0.0001) is assigned instead of zeros (Step

2). The reason for this assignment is the need for nonzero

elements for the calculation of the generalised eigenvalues.

For all r, the r-class matrices Ar
train are extracted from the

training matrix Atrain (Step 3). For all i; r and t, the gener-

alised eigenvalues for diag Ar
t�train

� �
and diag Ai�testð Þ are

calculated and then the matrix Br is constructed by

diag Ar
t�train

� �
’s quasi-distance values to diag Ai�testð Þ (Step

4). The elements in each row of Br are rearranged in an

ascending rank (Step 5). Recall that minimum values mean

maximum correlation. A column matrix is formed via k-

mean of each ascended row to improve the degree of

proximity (Step 6). In other words, k is the degree of free-

dom by which the algorithm can be tuned. Finally, the

classification label of the samples in the test data is found by

operationalising the row number corresponding to the min-

imum element in the column matrix (Step 7). This way can

determine the class labels of all the samples in the test data.

Neural Computing and Applications

123

To further increase the intelligibility of the EigenClass

algorithm regarding the pseudocode, a numerical example

is supplied below,

Example 2.1 A data matrix A taken from Balance Scale

dataset [27] is provided below to implement EigenClass. It

has 15 samples with 3 classes (l = 3) which are in the last

column, and each class has 5 samples.

A ¼

1 3 1 3 1

2 5 2 5 1

2 4 2 4 1

2 1 1 2 1

3 1 1 3 1

1 1 3 2 2

2 1 2 3 2

2 3 2 4 2

3 3 2 5 2

3 1 3 2 2

1 4 1 3 3

1 5 1 1 3

2 2 1 1 2

3 3 1 3 3

3 3 1 4 3

2

6666666666666666666666664

3

7777777777777777777777775

Step 1

Atrain ¼

1 3 1 3 1

2 4 2 4 1

2 1 1 2 1

3 1 1 3 1

1 1 3 2 2

2 1 2 3 2

2 3 2 4 2

3 1 3 2 2

1 4 1 3 3

1 5 1 1 3

2 2 1 1 3

3 3 1 3 3

2

6666666666666666664

3

7777777777777777775

and

Atest ¼
2 5 2 5

3 3 2 5

3 3 1 4

2

4

3

5

Step 2 Since no element with zero value exists, there is

no need to apply the procedure in this step.

Step 3 The r-class training matrices belonging to 1-class,

2-class, and 3-class are extracted from the training matrix

Atrain as given below.

A1
train ¼

1 3 1 3

2 4 2 4

2 1 1 2

3 1 1 3

2

6664

3

7775
;

A2
train ¼

1 1 3 2

2 1 2 3

2 3 2 4

3 1 3 2

2

6664

3

7775
;

A3
train ¼

1 4 1 3

1 5 1 1

2 2 1 1

3 3 1 3

2

6664

3

7775

Step 4 For A1
1�train ¼ 1 3 1 3½ � and

A1�test ¼ 2 5 2 5½ �, the generalised eigenvalues of

diag A1
1�train

� �
and diag A1�testð Þ are calculated as follows:

eig diag A1
1�train

� �
; diag A1�testð Þ

� �

¼ eig

1 0 0 0

0 3 0 0

0 0 1 0

0 0 0 3

2

664

3

775;

2 0 0 0

0 5 0 0

0 0 2 0

0 0 0 5

2

664

3

775

0

BB@

1

CCA ¼

0:5
0:5
0:6
0:6

2

664

3

775

Then, b111 of the proximity matrix B1 is calculated as

follows:

b111 ¼ q diag A1
1�train

� �
; diag A1�testð Þ

� �

¼ 0:5000þ 0:5000þ 0:4000þ 0:4000 ¼ 1:8000

The other entries of B1 are obtained similarly. Thus,

B1 ¼
1:8 0:4 1:9 2:2
2:4 1:2 0:6 2:4
1:6 1:8 1:9 1:8

2

4

3

5

Step 5 The following matrix �B1 is achieved by sorting

each row of B1 in an ascending rank to compute k-means of

the closest k training data to test data in each row of B1.

�B1 ¼
0:4 1:8 1:9 2:2
0:6 1:2 2:4 2:4
1:6 1:8 1:8 1:9

2

4

3

5

Step 6 In the case of k ¼ 3, we obtain C1 ¼
1:3667
1:4000
1:7333

2

4

3

5

via 3-mean of �B1 such that C1
11 ¼ 0:4þ1:8þ1:9

3
¼ 1:3667,

C1
12 ¼ 0:6þ1:2þ2:4

3
¼ 1:4000, and C1

13 ¼ 1:6þ1:8þ1:8
3

¼ 1:7333.

Step 7 Since the minimum value is 1:3667 in C1, d1i ¼ 1

that is A1�test should belong to the 1-class.

Neural Computing and Applications

123

3 Appreciating the performance
of EigenClass in comparison with the well-
known algorithms

The proposed EigenClass is compared with the well-known

machine learning algorithms kNN, fuzzy kNN, RF, and

MSVM through various datasets from UCI Machine

Learning Repository [28] (Table 1) to assess their classi-

fication performance. The classification results are con-

ducted via MATLAB R2018b running on a workstation

with I(R) Xeon(R) CPU E5-1620 v4 @ 3.5 GHz, and

64 GB RAM. MATLAB source code of the proposed

EigenClass algorithm is publicly available at: https://www.

mathworks.com/matlabcentral/fileexchange/78462-eigenva

lue-classification-for-machine-learning.

3.1 Comparative classification results

Each algorithm is trained and tested using the K-fold cross-

validation [29]. In K-fold cross-validation, the dataset is

split into K equal-sized subsamples whose samples are

randomly designated. While one subsample is kept as

validating data, the remaining K-1 subsamples are used in

training the algorithm. In K-fold cross-validation, number

of K processes are carried out for every subsample to be

processed as validating data. Therefore, every subsample is

employed only once as validating data, and the whole

dataset is used for both training and validating data. In this

study, 5-fold cross-validation is carried out and thus, the

mean of the results for 5 iterations are recorded. Eventu-

ally, this process is repeated thirty times and their results

are averaged to evaluate the performance measures.

Meanwhile, some control parameters should be set for the

compared algorithms. The number of the nearest neigh-

bours and the distance function are considered as three and

Euclidean distance for kNN, respectively. Similarly, the

number of nearest neighbours is selected as 3 for fuzzy

kNN. The Kernel function for MSVM is preferred as a

radial basis function. The numbers of trees for the RF are

set to be 60. Finally, k value used for calculation of k-mean

is set to be 3 for the EigenClass algorithm.

The classification results of the algorithms are then

compared among each other in terms of the most utilised

measures, such as accuracy, precision, recall, micro-F-

measure, and macro-F-measure [30] as defined below,

Accuracy ¼ 1

Q

XQ

i¼1

TPi þ TNi

TPi þ TNi þ FPi þ FNi
ð1Þ

Precision ¼ 1

Q

XQ

i¼1

TPi

TPi þ FPi
ð2Þ

Recall ¼ 1

Q

XQ

i¼1

TPi

TPi þ FNi
ð3Þ

Macro - F measure ¼ 1

Q

XQ

i¼1

2� TPi

2� TPi þ FPi þ FNi
ð4Þ

Micro - F measure ¼ 2
PQ

i¼1 TPi

2
PQ

i¼1 TPi þ
PQ

i¼1 FPi þ
PQ

i¼1 FNi

ð5Þ

where TPi, TNi, FPi, and FNi are the number of true pos-

itives, true negatives, false positives, and false negatives

for the label i, respectively, and Q is the total number of the

class label.

Table 2 shows the classification results computed by

kNN, Fuzzy kNN, MSVM, RF, and the proposed Eigen-

Class algorithm through the 20 datasets presented in

Table 1 concerning the measures, accuracy, precision,

recall, micro-F-measure, and macro-F-measure with stan-

dard deviation (SD). The SD is an important metric that

apprises the stability of an algorithm. It is calculated by the

square root of the mean square difference between each

solution and the average of the solutions found at each run.

Since Table 2 includes large data, it is difficult to trace the

results and interpret the performances of the algorithms. To

facilitate this, Tables 3 and 4, in which the results of

Table 2 are compiled by ranking the number of the best

Table 1 The properties of 20 datasets from UCI

No Name Sample Attribute Class

1 Seeds 210 7 3

2 Wireless 2000 7 4

3 Wine 178 13 3

4 Immunotherapy 90 7 2

5 Cryotherapy 90 6 2

6 Iris 150 4 3

7 Breast Cancer Wisconsin 569 30 2

8 Balance Scale 625 4 3

9 Dermatology 366 34 6

10 Haberman’s Survival 306 3 2

11 Hepatitis 155 19 2

12 Teaching 151 5 3

13 Zoo 101 16 7

14 Libras 360 91 15

15 Hayes 132 5 3

16 Vehicle 846 18 4

17 Australian 690 14 2

18 E. coli 336 7 8

19 Musk (Version 2) 6598 168 2

20 Semeion 1593 256 2

Neural Computing and Applications

123

https://www.mathworks.com/matlabcentral/fileexchange/78462-eigenvalue-classification-for-machine-learning
https://www.mathworks.com/matlabcentral/fileexchange/78462-eigenvalue-classification-for-machine-learning
https://www.mathworks.com/matlabcentral/fileexchange/78462-eigenvalue-classification-for-machine-learning

Table 2 The classification results regarding the averages of accuracy, precision, recall, micro-F-measure, and macro-F-measure (%)

Dataset Methods Accuracy ± SD Precision ± SD Recall ± SD Micro-F-

measure ± SD

Macro-F-

measure ± SD

Seeds kNN 95.68 – 0.66 93.94 – 0.90 93.52 – 0.98 93.48 – 0.98 93.52 – 0.98

Fuzzy kNN 93.87 ± 0.95 91.28 ± 1.41 90.81 ± 1.42 90.74 ± 1.44 90.81 ± 1.42

MSVM 94.25 ± 0.38 91.83 ± 0.67 91.38 ± 0.57 91.34 ± 0.60 91.38 ± 0.57

RF 95.52 ± 0.53 93.80 ± 0.77 93.29 ± 0.79 93.26 ± 0.80 93.29 ± 0.79

EigenClass 95.05 ± 0.01 92.86 ± 0.01 92.57 ± 0.01 92.51 ± 0.01 92.57 ± 0.01

Wireless kNN 99.08 ± 0.07 98.19 ± 0.14 98.17 ± 0.14 98.17 ± 0.14 98.17 ± 0.14

Fuzzy kNN 99.20 ± 0.07 98.42 ± 0.14 98.40 ± 0.15 98.40 ± 0.15 98.40 ± 0.15

MSVM 98.95 ± 0.13 97.92 ± 0.26 97.89 ± 0.27 97.89 ± 0.27 97.89 ± 0.27

RF 99.13 ± 0.10 98.28 ± 0.21 98.25 ± 0.21 98.25 ± 0.21 98.25 ± 0.21

EigenClass 99.37 – 0.05 98.77 – 0.04 98.75 – 0.03 98.75 – 0.07 98.75 – 0.08

Wine kNN 96.93 ± 0.54 95.61 ± 0.76 96.15 ± 0.66 95.56 ± 0.80 95.39 ± 0.81

Fuzzy kNN 83.33 ± 0.63 75.14 ± 1.13 74.13 ± 1.07 73.97 ± 1.07 74.99 ± 0.95

MSVM 97.19 ± 0.51 95.97 ± 0.80 96.05 ± 0.75 95.83 ± 0.78 95.78 ± 0.77

RF 98.43 ± 0.39 97.68 ± 0.52 97.91 ± 0.60 97.69 ± 0.57 97.64 ± 0.58

EigenClass 99.17 – 0.01 98.85 – 0.01 98.96 – 0.01 98.85 – 0.01 98.75 – 0.01

Immunotherapy kNN 70.54 ± 2.16 58.16 ± 3.85 57.21 ± 4.56 63.02 ± 4.78 70.54 ± 2.16

Fuzzy kNN 61.16 ± 3.13 44.84 ± 4.02 43.99 ± 3.47 64.17 ± 3.66 61.16 ± 3.13

MSVM 79.17 ± 2.11 75.15 ± 5.05 55.22 ± 3.34 78.09 ± 2.75 79.17 ± 2.11

RF 84.94 – 2.80 81.33 – 5.96 71.29 – 4.01 76.41 – 4.19 84.94 – 2.80

EigenClass 81.37 ± 0.02 81.14 ± 0.08 57.28 ± 0.03 77.80 ± 0.06 81.37 ± 0.02

Cryotherapy kNN 88.58 ± 2.19 89.43 ± 2.23 88.34 ± 2.15 88.34 ± 2.23 88.58 ± 2.19

Fuzzy kNN 90.04 ± 2.33 91.23 ± 1.99 89.93 ± 2.39 89.80 ± 2.45 90.04 ± 2.33

MSVM 86.67 ± 2.98 87.94 ± 2.56 86.86 ± 3.14 86.49 ± 3.11 86.67 ± 2.98

RF 91.04 ± 2.66 91.93 ± 2.07 91.23 ± 2.68 90.93 ± 2.80 91.04 ± 2.66

EigenClass 93.31 – 0.04 94.20 – 0.04 93.11 – 0.05 93.17 – 0.05 93.31 – 0.04

Iris kNN 96.27 ± 0.52 94.74 ± 0.79 94.40 ± 0.78 94.38 ± 0.78 94.40 ± 0.78

Fuzzy kNN 97.16 ± 0.37 96.01 ± 0.58 95.73 ± 0.56 95.72 ± 0.56 95.73 ± 0.56

MSVM 97.51 ± 0.52 96.54 ± 0.82 96.27 ± 0.78 96.25 ± 0.78 96.27 ± 0.78

RF 96.71 ± 0.52 95.45 ± 0.74 95.07 ± 0.78 95.05 ± 0.79 95.07 ± 0.78

EigenClass 97.98 – 0.01 96.80 – 0.01 96.47 – 0.01 96.45 – 0.01 96.47 – 0.01

Breast Cancer Wisconsin kNN 95.06 ± 0.40 95.04 ± 0.42 94.43 ± 0.49 94.68 ± 0.44 95.06 ± 0.40

Fuzzy kNN 91.39 ± 0.49 91.36 ± 0.62 90.28 ± 0.49 90.68 ± 0.53 91.39 ± 0.49

MSVM 95.60 ± 0.48 95.68 ± 0.51 94.96 ± 0.54 95.26 ± 0.52 95.60 ± 0.48

RF 96.01 ± 0.48 95.96 ± 0.56 95.57 ± 0.48 95.71 ± 0.51 96.01 ± 0.48

EigenClass 97.19 – 0.01 96.86 – 0.01 96.78 – 0.01 96.75 – 0.01 96.78 – 0.01

Balance Scale kNN 85.56 ± 0.65 56.81 ± 0.38 56.67 ± 0.70 84.93 ± 0.75 78.34 ± 0.97

Fuzzy kNN 85.84 ± 0.20 58.81 ± 0.34 56.98 ± 0.22 85.51 ± 0.30 78.77 ± 0.30

MSVM 84.45 ± 0.01 83.28 ± 0.28 61.74 ± 0.04 85.65 ± 0.16 81.68 ± 0.01

RF 89.44 ± 0.40 58.98 ± 0.32 60.88 ± 0.43 89.82 ± 0.45 84.16 ± 0.60

EigenClass 91.74 – 0.01 87.88 – 0.13 63.37 – 0.02 92.10 – 0.01 87.60 – 0.03

Dermatology kNN 98.29 ± 0.25 94.80 ± 0.74 94.65 ± 0.84 94.46 ± 0.79 94.86 ± 0.76

Fuzzy kNN 96.33 ± 0.33 87.99 ± 1.25 88.06 ± 0.97 87.42 ± 1.06 88.99 ± 0.98

MSVM 97.24 ± 0.15 92.15 ± 0.53 89.24 ± 0.52 89.68 ± 0.58 91.73 ± 0.45

RF 98.84 ± 0.16 96.36 ± 0.51 96.23 ± 0.66 96.04 ± 0.61 96.53 ± 0.49

EigenClass 99.20 – 0.01 97.62 – 0.02 97.14 – 0.02 97.22 – 0.02 97.60 – 0.01

Neural Computing and Applications

123

Table 2 (continued)

Dataset Methods Accuracy ± SD Precision ± SD Recall ± SD Micro-F-

measure ± SD

Macro-F-

measure ± SD

Haberman’s Survival kNN 65.07 ± 1.12 54.84 ± 1.45 54.92 ± 1.64 54.58 ± 1.52 65.07 ± 1.12

Fuzzy kNN 68.20 ± 1.74 59.08 ± 2.54 58.98 ± 2.63 58.71 ± 2.42 68.20 ± 1.74

MSVM 72.85 ± 0.88 63.16 ± 8.70 51.14 ± 1.39 62.21 ± 5.38 72.85 ± 0.88

RF 68.36 ± 1.43 57.62 ± 2.26 56.21 ± 1.32 56.23 ± 1.68 68.36 ± 1.43

EigenClass 76.60 – 0.03 70.06 – 0.04 61.96 – 0.02 63.67 – 0.02 76.60 – 0.03

Hepatitis kNN 57.29 ± 1.21 56.64 ± 1.70 56.38 ± 1.25 56.00 ± 1.49 57.29 ± 1.21

Fuzzy kNN 57.61 ± 3.73 57.55 ± 4.03 57.41 ± 3.89 57.02 ± 3.85 57.61 ± 3.73

MSVM 62.97 ± 2.47 63.11 ± 2.90 61.66 ± 2.50 60.99 ± 2.72 62.97 ± 2.47

RF 62.00 ± 2.64 62.04 ± 2.93 61.24 ± 2.66 60.86 ± 2.68 62.00 ± 2.64

EigenClass 64.06 – 0.02 64.73 – 0.03 62.82 – 0.03 62.29 – 0.03 64.06 – 0.03

Teaching kNN 74.33 ± 1.50 62.22 ± 2.31 61.59 ± 2.26 61.10 ± 2.06 61.49 ± 2.25

Fuzzy kNN 72.27 ± 1.73 59.87 ± 3.18 58.33 ± 2.60 58.11 ± 2.85 58.41 ± 2.59

MSVM 67.77 ± 1.45 53.69 ± 2.20 51.78 ± 2.20 51.06 ± 2.33 51.65 ± 2.18

RF 75.38 ± 1.87 64.22 ± 3.03 62.96 ± 2.78 62.61 ± 2.81 63.07 ± 2.80

EigenClass 75.74 – 0.02 64.96 – 0.04 63.52 – 0.03 63.12 – 0.03 63.61 – 0.03

Zoo kNN 97.57 ± 0.31 88.36 ± 2.73 83.58 ± 2.50 91.84 ± 1.10 91.67 ± 1.05

Fuzzy kNN 98.87 ± 0.23 95.05 ± 1.25 90.26 ± 1.16 96.16 ± 1.73 96.16 ± 0.70

MSVM 98.56 ± 0.46 92.57 ± 2.01 90.32 ± 2.76 94.99 ± 1.30 95.06 ± 1.59

RF 98.57 ± 0.45 92.51 ± 2.39 88.00 ± 3.79 95.33 ± 1.56 95.12 ± 1.46

EigenClass 99.33 – 0.46 96.53 – 0.41 93.67 – 0.35 97.87 – 0.42 97.72 – 0.42

Libras kNN 97.17 ± 0.09 81.97 ± 0.54 78.79 ± 0.67 78.43 ± 0.75 78.77 ± 0.68

Fuzzy kNN 97.15 ± 0.18 81.81 ± 1.12 78.64 ± 1.27 78.29 ± 1.23 78.65 ± 1.33

MSVM 93.37 ± 0.14 57.98 ± 1.67 50.47 ± 1.22 52.29 ± 1.08 50.25 ± 1.07

RF 96.23 ± 0.28 75.27 ± 1.85 71.84 ± 2.04 71.87 ± 2.06 71.72 ± 2.08

EigenClass 97.52 – 0.01 82.83 – 0.06 79.07 – 0.07 79.46 – 0.07 79.39 – 0.08

Hayes kNN 75.97 ± 2.99 71.10 ± 3.78 63.97 ± 4.22 65.52 ± 4.05 63.96 ± 4.48

Fuzzy kNN 59.38 ± 2.13 37.44 ± 4.82 35.55 ± 2.94 39.12 ± 2.87 39.07 ± 3.20

MSVM 74.38 ± 1.17 66.64 ± 1.77 62.63 ± 1.49 63.35 ± 1.53 61.57 ± 1.75

RF 87.42 – 1.68 84.70 – 2.14 83.62 – 2.15 83.40 – 2.30 81.13 – 2.52

EigenClass 76.05 ± 0.02 69.39 ± 0.05 59.66 ± 0.05 60.28 ± 0.03 64.08 ± 0.04

Vehicle kNN 84.45 ± 0.53 68.76 ± 1.10 69.09 ± 1.07 68.80 ± 1.07 68.90 ± 1.06

Fuzzy kNN 81.91 ± 0.44 63.51 ± 0.86 64.17 ± 0.88 63.67 ± 0.85 63.82 ± 0.89

MSVM 87.09 ± 0.44 73.30 ± 0.89 74.47 ± 0.88 73.55 ± 0.89 74.18 ± 0.89

RF 89.10 – 0.23 78.43 – 0.50 78.43 – 0.47 78.24 – 0.47 78.21 – 0.47

EigenClass 83.31 ± 0.01 65.08 ± 0.01 66.85 ± 0.01 65.41 ± 0.01 66.63 ± 0.01

Australian kNN 79.55 ± 0.84 79.49 ± 0.86 79.20 ± 0.85 79.23 ± 0.84 79.55 ± 0.84

Fuzzy kNN 65.69 ± 0.58 65.29 ± 0.63 64.92 ± 0.59 64.92 ± 0.59 65.69 ± 0.58

MSVM 75.08 ± 4.63 78.32 ± 5.36 73.94 ± 4.49 72.46 ± 5.48 .75.08 ± 4.63

RF 83.01 ± 0.55 85.26 ± 0.53 81.55 ± 0.62 82.06 ± 0.58 83.01 ± 0.55

EigenClass 84.43 – 0.01 86.51 – 0.01 82.46 – 0.01 82.95 – 0.02 83.84 – 0.01

E. coli kNN 94.41 ± 0.34 72.02 ± 2.42 67.76 ± 1.42 76.85 ± 1.66 80.13 ± 1.34

Fuzzy kNN 94.60 ± 0.36 75.28 ± 2.12 71.22 ± 1.12 79.04 ± 1.35 81.10 ± 1.12

MSVM 93.85 ± 0.18 77.61 ± 2.56 50.22 ± 1.57 76.56 ± 2.12 79.28 ± 0.55

RF 94.69 ± 0.32 74.46 ± 1.96 71.25 ± 2.37 78.70 ± 1.47 81.01 ± 1.10

EigenClass 95.72 – 0.28 83.53 – 0.21 71.87 – 0.20 82.64 – 0.22 85.46 – 0.24

Neural Computing and Applications

123

results for every algorithm, are prepared. While Table 3 is

composed of the ranking numbers of the best results for all

the algorithms compared among each other, Table 4

includes the ranking numbers of the best results for two

algorithms versus each other in pairwise comparisons. It

can be understood from Table 3 that EigenClass outper-

forms the other algorithms for 15 datasets, while it pro-

duces close results (see also Table 2) for the remaining 5

datasets in view of each metric. Hence, EigenClass clas-

sifies datasets with the best results of the total number of 75

for all the measures. Conversely, the other algorithms kNN,

Fuzzy kNN, MSVM, and RF classify the datasets with the

total number of 9, 0, 2, and 14, respectively. Besides, it is

clear from Table 4 that EigenClass outperforms the other

algorithms for at least 16 datasets in every metric in the

pairwise comparisons. Therefore, EigenClass is the most

successful algorithm considering the overall classification

performance. The comparison of the algorithms in terms of

the SD yields that EigenClass is the most stable algorithms

as well.

Note that the classification results in the literature show

that a classification algorithm might not achieve the most

successful results for all dataset. It can be inferred that the

classification algorithms proposed in the literature might be

problem-dependent, considering their classification abili-

ties [31, 32].

3.2 Statistical evaluation

In this subsection, Friedman test [33] and the Nemenyi post

hoc test [34] are exploited to assess whether the overall

differences among the measures accuracy, precision, recall,

micro-F-measure, and macro-F-measure are statistically

significant. Friedman test is a nonparametric tool to test

Table 2 (continued)

Dataset Methods Accuracy ± SD Precision ± SD Recall ± SD Micro-F-

measure ± SD

Macro-F-

measure ± SD

Musk (Version 2) kNN 94.75 ± 0.08 89.12 ± 0.21 91.48 ± 0.17 90.22 ± 0.15 94.75 ± 0.09

Fuzzy kNN 95.32 ± 0.11 90.28 ± 0.32 92.38 ± 0.17 91.26 ± 0.18 95.32 ± 0.11

MSVM 73.16 ± 3.51 60.49 ± 2.64 65.49 ± 3.78 60.73 ± 3.36 73.16 ± 3.51

RF 96.21 ± 0.01 96.75 ± 0.03 92.01 ± 0.02 94.03 ± 0.08 96.18 ± 0.01

EigenClass 97.69 – 0.11 98.00 – 0.09 93.09 – 0.34 95.33 – 0.23 97.69 – 0.10

Semeion kNN 97.95 – 0.24 97.18 – 0.54 91.15 – 1.04 93.80 – 0.80 97.95 – 0.25

Fuzzy kNN 97.44 ± 0.31 96.21 ± 0.62 89.13 ± 1.21 92.19 ± 1.04 97.44 ± 0.31

MSVM 97.75 ± 0.21 94.79 ± 0.71 92.51 ± 1.39 93.52 ± 0.66 97.75 ± 0.21

RF 96.36 ± 0.34 96.75 ± 0.45 82.49 ± 1.61 87.87 ± 1.33 96.36 ± 0.33

EigenClass 96.72 ± 0.01 96.97 ± 0.01 90.99 ± 0.01 92.91 ± 0.01 96.74 ± 0.01

Table 3 Ranking number of the

best results for all algorithm

compared among each other

Methods Accuracy Precision Recall Micro-F-measure Macro-F-measure Total rank

kNN 2 2 1 2 2 9

Fuzzy kNN – – – – – –

MSVM – – 1 1 – 2

RF 3 3 3 2 3 14

EigenClass 15 15 15 15 15 75

Table 4 Ranking number of the

best results for two algorithms

compared versus each other

Comparison Accuracy Precision Recall Micro-F-measure Macro-F-measure

EigenClass versus kNN 17 16 16 16 17

EigenClass versus Fuzzy kNN 18 20 20 20 19

EigenClass versus MSVM 17 19 17 16 18

EigenClass versus RF 16 16 16 17 16

Neural Computing and Applications

123

multiple hypotheses and Nemenyi test is one of the post

hoc tests widely used to compare the classifiers simulta-

neously. Friedman test ranks the algorithms based on their

performances for each dataset separately; hence, the rank

of 1 is assigned to the best performing algorithm, the rank

of 2 to second-best, etc. It assigns average ranks in the case

of obtaining an equal rank. Then, Friedman test compares

the average ranks of the algorithms. Next, it calculates

according to v2F distribution with k � 1 degree of freedom

(k is the number of algorithms). To detect a statistically

significant difference in the performance, a post hoc test

should be used to detect the algorithms which cause these

differences. Nemenyi test is widely used for this case. This

test shows that their performance is remarkably different in

the event that the average ranks of the two algorithms are

different from some critical distances.

We first calculate the average rank of each algorithm

considered in our experiments with k ¼ 5 and n ¼ 20 since

the total number of the methods is 5 and the total number

of the datasets is 20. If the accuracy, precision, recall,

micro-F-measure, and macro-F-measure values of the

Friedman test statistic are v2F ¼ 28:52, v2F ¼ 31:48,

v2F ¼ 25:36, v2F ¼ 27:08, and v2F ¼ 31:08, respectively,

with 4 k � 1ð Þ degrees of freedom and the critical value for

the Friedman test given for k ¼ 5 and n ¼ 20 is 9:49 at a

significance level of a ¼ 0:05, we can conclude that the

accuracy, precision, recall, micro-F-measure, and macro-F-

measure values of the studied methods are significantly

different (28:52[9:49, 31:48[9:49, 25:36[9:49,

27:08[9:49, and 31:08[9:49, respectively). Now that

the null hypothesis is rejected, we can proceed with a post

hoc test. The Nemenyi test [33] can be used when all

classifiers are compared to each other [35].

The critical value in our experiments with k ¼ 5 and

a ¼ 0:05 is CD0:05 ¼ 1:364. As a result, the accuracy,

precision, recall, micro-F-measure, and macro-F-measure

of the proposed EigenClass method is significantly differ-

ent from MSVM, kNN, and Fuzzy kNN methods, while it

is not significantly different from RF method. Figure 1

illustrates the statistical comparison of the methods con-

sidered in our experiments based on the Nemenyi test.

3.3 Evaluation of processing time
and computational complexity

To further compare the algorithms according to processing

time, Table 5 provides the mean processing time data for

the 20 UCI datasets at thirty runs. As can be inferred from

Table 6, EigenClass, in general, seems to operate slightly

slower than the other algorithms. The underlying cause of

this higher processing time depends on the MATLAB

operation. MATLAB does not allow for parallel computing

for multiparameter eig(A, B) command set allows for only

a single parameter, i.e. eig(A) [36]. We believe that the

processing time can be further decreased if the parallel

Fig. 1 The critical diagrams for the five measures [(a) Accuracy, (b) Precision, (c) Recall, (d) Micro-F-measure, (e) Macro-F-measure]: the

results from the Nemenyi post hoc test at 0.05 significance level and average rank scores from Friedman Test

Neural Computing and Applications

123

computing property is activated for the multiparameter

command and by optimising the coding of the algorithm in

future works. Nevertheless, EigenClass computes the

classification tasks under 1 s for 15 datasets. The pro-

cessing time of an algorithm should be independently

evaluated in consideration of the computational complexity

based on big O notation [37, 38]. From the pseudocode of

the EigenClass algorithm, the computational complexities

are O m� nð Þ for Step 2, O n� lð Þ for Steps 3–4, and O nð Þ
for Steps 5–7 for each, where m and n are the numbers of

attributes and samples, respectively. Because m� n is

higher than n� l, the general computational complexity is

O m� nð Þ in terms of big O notation. The computational

complexities of the compared algorithms are given in

Table 6. Therefore, EigenClass has the second lowest

computational complexity together with kNN after Fuzzy

kNN.

In conclusion, the developed EigenClass algorithm is

generally superior to the other existing well-known algo-

rithms in view of the accuracy, precision, recall, micro-F-

measure, and macro-F-measure measures. Moreover, it

seems that EigenClass suffers from two minor disadvan-

tages. The one is, as mentioned above, to assign a very

small value (i.e. 0.0001) instead of 0 (zero) entries,

resulting in a modification of the original dataset that may

affect the performance of the algorithm. That is why

EigenClass is not as successful for Hayes and Semeion

datasets as the other algorithms. Note that Semeion dataset

particularly consists of binary data. The second is related to

the processing time that tends to increase when the number

of samples and attributes of the dataset grows higher.

4 Conclusion

In the present study, a novel machine learning algorithm,

namely EigenClass, which is built on the concept of

eigenvalue, has been proposed for the classification prob-

lems. EigenClass is based on eigenvalue’s notable prox-

imity evaluation capability. Classification performance of

EigenClass is evaluated through an effective comparison

with several proven machine learning algorithms, i.e. kNN,

fuzzy kNN, RF, and MSVM. The algorithms are trained

and tested for 30 runs using 5-fold cross-validation over the

Table 5 Average processing

time for the 20 UCI datasets (in

seconds)

Dataset kNN Fuzzy KNN MSVM RF EigenClass

Seeds 0.20 0.01 0.28 1.66 0.07

Wireless 0.32 0.04 1.40 13.32 5.34

Wine 0.05 0.01 0.61 1.23 0.06

Immunotherapy 0.02 0.01 0.50 0.66 0.01

Cryotherapy 0.02 0.01 0.32 0.65 0.01

Iris 0.03 0.01 0.09 1.05 0.02

Breast Cancer Wisconsin 0.10 0.01 4.53 3.80 1.23

Balance Scale 0.10 0.01 0.31 4.32 0.37

Dermatology 0.07 0.01 0.55 2.47 0.62

Haberman’s survival 0.05 0.01 0.49 2.10 0.09

Hepatitis 0.03 0.01 1.45 1.09 0.06

Teaching 0.03 0.01 0.25 1.08 0.03

Zoo 0.02 0.01 0.27 0.74 0.02

Libras 0.06 0.01 2.86 2.71 0.74

Hayes 0.03 0.01 0.14 0.96 0.03

Vehicle 0.14 0.01 7.62 6.12 1.44

Australian 0.12 0.01 7.41 4.75 0.91

E. coli 0.05 0.01 0.81 2.36 0.13

Musk (Version 2) 8.00 3.50 98.90 47.30 153.70

Semeion 0.78 0.28 0.56 10.81 59.36

Table 6 Computational complexity of the algorithms

Method Computational complexity

kNN [39] O n log kð Þ
Fuzzy kNN [40] O n2 log kð Þð Þ
MSVM with Kernel [41] O m3ð Þ
RF [42] O Mmn log nð Þ
EigenClass O m� nð Þ

k, number of neighbours; M, number of trees

Neural Computing and Applications

123

most frequently utilised 20 datasets. The results are then

evaluated using several well-known measures, such as

accuracy, precision, recall, micro-F-measure, and macro-F-

measure. The EigenClass algorithm more accurately clas-

sifies most of the evaluated datasets. To exemplify, it yields

the best results in the occurrence of 15 datasets in terms of

every metric when each is compared with the other and in

at least 16 datasets for each metric in a pairwise compar-

ison. Statistical analyses and computational complexity are

performed to further examine the precision and processing

time of the algorithms by comparing them with the others.

Hence, EigenClass generally outperforms the algorithms in

the comparison in view of the results. Therefore, this study

is the first to develop an eigenvalue-based machine learn-

ing algorithm, which is accurate and efficient. The

achieved results intended for some classification problems

are sufficient to prove the success of EigenClass though it

can be further improved by optimising the steps and coding

of the algorithm.

Compliance with ethical standards

Conflict of interest The author declares that they have no conflict of

interest.

References

1. Jin R, Zhang J (2007) Multi-class learning by smoothed boosting.

Mach Learn 67:207–227. https://doi.org/10.1007/s10994-007-

5005-y

2. Takenouchi T, Ishii S (2018) Binary classifiers ensemble based

on Bregman divergence for multi-class classification. Neuro-

computing 273:424–434. https://doi.org/10.1016/j.neucom.2017.

08.004

3. Li P (2019) Research on radar signal recognition based on

automatic machine learning. Neural Comput Appl. https://doi.

org/10.1007/s00521-019-04494-1

4. Takenouchi T, Ishii S (2011) Ternary Bradley-Terry model-based

decoding for multi-class classification and its extensions. Mach

Learn 85:249–272. https://doi.org/10.1007/s10994-011-5240-0

5. Xu H, Wang W, Qian Y (2017) Fusing complete monotonic

decision trees. IEEE Trans Knowl Data Eng 29:2223–2235.

https://doi.org/10.1109/TKDE.2017.2725832

6. Liu T, Tao D (2016) Classification with noisy labels by impor-

tance reweighting. IEEE Trans Pattern Anal Mach Intell

38:447–461. https://doi.org/10.1109/TPAMI.2015.2456899

7. Langseth H, Nielsen TD (2006) Classification using hierarchical

Naı̈ve Bayes models. Mach Learn 63:135–159. https://doi.org/10.

1007/s10994-006-6136-2

8. Nebel D, Kaden M, Villmann A, Villmann T (2017) Types of

(dis-)similarities and adaptive mixtures thereof for improved

classification learning. Neurocomputing 268:42–54. https://doi.

org/10.1016/j.neucom.2016.12.091

9. Quost B, Destercke S (2017) Classification by pairwise coupling

of imprecise probabilities. Pattern Recognit 77:412–425. https://

doi.org/10.1016/j.patcog.2017.10.019

10. Law A, Ghosh A (2019) Multi-label classification using a cascade

of stacked autoencoder and extreme learning machines. Neuro-

computing 358:222–234. https://doi.org/10.1016/j.neucom.2019.

05.051

11. Samaniego L, Bárdossy A, Schulz K (2008) Supervised classifi-

cation of remotely sensed imagery using a modified k-NN tech-

nique. IEEE Trans Geosci Remote Sens 46:1–26. https://doi.org/

10.1109/TGRS.2008.916629

12. Warfield S (1996) Fast k-NN classification for multichannel

image data. Pattern Recognit Lett 17:713–721. https://doi.org/10.

1016/0167-8655(96)00036-0

13. Zhang JJ, Fang M, Li X (2017) Clustered intrinsic label corre-

lations for multi-label classification. Expert Syst Appl

81:134–146. https://doi.org/10.1016/j.eswa.2017.03.054

14. Liu Z, Cheng Y, Wang P et al (2018) A method for remaining

useful life prediction of crystal oscillators using the Bayesian

approach and extreme learning machine under uncertainty.

Neurocomputing 305:27–38. https://doi.org/10.1016/j.neucom.

2018.04.043

15. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn

20:273–297. https://doi.org/10.1023/A:1022627411411

16. Dudani SA (1976) The distance-weighted k-Nearest-neighbor

rule. IEEE Trans Syst Man Cybern SMC-6:325–327. https://doi.

org/10.1109/tsmc.1976.5408784

17. Breiman L (2001) Random forests. Mach Learn 45:5–32. https://

doi.org/10.1023/A:1010933404324

18. Li S, Song S, Wan Y (2018) Laplacian twin extreme learning

machine for semi-supervised classification. Neurocomputing

321:17–27. https://doi.org/10.1016/j.neucom.2018.08.028

19. Zhang C, Liu C, Zhang X, Almpanidis G (2017) An up-to-date

comparison of state-of-the-art classification algorithms. Expert

Syst Appl 82:128–150. https://doi.org/10.1016/j.eswa.2017.04.

003

20. Noh Y-K, Zhang B-T, Lee DD (2018) Generative local metric

learning for nearest neighbor classification. IEEE Trans Pattern

Anal Mach Intell 40:106–118. https://doi.org/10.1109/TPAMI.

2017.2666151

21. Wang X, Shen S, Shi G et al (2016) Iterative non-local means

filter for salt and pepper noise removal. J Vis Commun Image

Represent 38:440–450. https://doi.org/10.1016/j.jvcir.2016.03.

024

22. Vladimir Naumovich V (1998) Statistical learning theory.

Springer, New York

23. Ai Q, Wang A, Wang Y, Sun H (2019) An improved Twin-KSVC

with its applications. Neural Comput Appl 31:6615–6624. https://

doi.org/10.1007/s00521-018-3487-0

24. Jolliffe IT (2002) Principal component analysis, 2nd edn.

Springer, New York

25. Balakrishnama S, Ganapathiraju A (1998) Linear discriminant

analysis—a brief tutorial. Inst Signal Inf Process 18:1–8

26. Keller JM, Gray MR (1985) A fuzzy K-nearest neighbor algo-

rithm. IEEE Trans Syst Man Cybern SMC-15:580–585. https://

doi.org/10.1109/tsmc.1985.6313426

27. Shultz TR, Mareschal D, Schmidt WC (1994) Modeling cognitive

development on balance scale phenomena. Mach Learn. https://

doi.org/10.1023/A:1022630902151

28. Dua D, Graff C (2019) UCI machine learning repository. School

of Information and Computer Sciences University of California.

http://archive.ics.uci.edu/ml. Accessed 13 Aug 2019

29. Ustun D, Toktas A, Akdagli A (2019) Deep neural network-based

soft computing the resonant frequency of E-shaped patch anten-

nas. AEU Int J Electron Commun 102:54–61. https://doi.org/10.

1016/j.aeue.2019.02.011

30. Nguyen TT, Dang MT, Luong AV et al (2019) Multi-label

classification via incremental clustering on an evolving data

Neural Computing and Applications

123

https://doi.org/10.1007/s10994-007-5005-y
https://doi.org/10.1007/s10994-007-5005-y
https://doi.org/10.1016/j.neucom.2017.08.004
https://doi.org/10.1016/j.neucom.2017.08.004
https://doi.org/10.1007/s00521-019-04494-1
https://doi.org/10.1007/s00521-019-04494-1
https://doi.org/10.1007/s10994-011-5240-0
https://doi.org/10.1109/TKDE.2017.2725832
https://doi.org/10.1109/TPAMI.2015.2456899
https://doi.org/10.1007/s10994-006-6136-2
https://doi.org/10.1007/s10994-006-6136-2
https://doi.org/10.1016/j.neucom.2016.12.091
https://doi.org/10.1016/j.neucom.2016.12.091
https://doi.org/10.1016/j.patcog.2017.10.019
https://doi.org/10.1016/j.patcog.2017.10.019
https://doi.org/10.1016/j.neucom.2019.05.051
https://doi.org/10.1016/j.neucom.2019.05.051
https://doi.org/10.1109/TGRS.2008.916629
https://doi.org/10.1109/TGRS.2008.916629
https://doi.org/10.1016/0167-8655(96)00036-0
https://doi.org/10.1016/0167-8655(96)00036-0
https://doi.org/10.1016/j.eswa.2017.03.054
https://doi.org/10.1016/j.neucom.2018.04.043
https://doi.org/10.1016/j.neucom.2018.04.043
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1109/tsmc.1976.5408784
https://doi.org/10.1109/tsmc.1976.5408784
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.neucom.2018.08.028
https://doi.org/10.1016/j.eswa.2017.04.003
https://doi.org/10.1016/j.eswa.2017.04.003
https://doi.org/10.1109/TPAMI.2017.2666151
https://doi.org/10.1109/TPAMI.2017.2666151
https://doi.org/10.1016/j.jvcir.2016.03.024
https://doi.org/10.1016/j.jvcir.2016.03.024
https://doi.org/10.1007/s00521-018-3487-0
https://doi.org/10.1007/s00521-018-3487-0
https://doi.org/10.1109/tsmc.1985.6313426
https://doi.org/10.1109/tsmc.1985.6313426
https://doi.org/10.1023/A:1022630902151
https://doi.org/10.1023/A:1022630902151
http://archive.ics.uci.edu/ml
https://doi.org/10.1016/j.aeue.2019.02.011
https://doi.org/10.1016/j.aeue.2019.02.011

stream. Pattern Recognit 95:96–113. https://doi.org/10.1016/j.

patcog.2019.06.001

31. Abdar M, Zomorodi-Moghadam M, Zhou X et al (2018) A new

nested ensemble technique for automated diagnosis of breast

cancer. Pattern Recognit Lett. https://doi.org/10.1016/j.patrec.

2018.11.004

32. Adem K, Kiliçarslan S, Cömert O (2019) Classification and

diagnosis of cervical cancer with softmax classification with

stacked autoencoder. Expert Syst Appl 115:557–564. https://doi.

org/10.1016/j.eswa.2018.08.050

33. Friedman M (1940) A comparison of alternative tests of signifi-

cance for the problem of m rankings. Ann Math Stat 11:86–92.

https://doi.org/10.1214/aoms/1177731944

34. Nemenyi P (1963) Distribution-free multiple comparisons. Ph.D.

Princeton University

35. Demšar J (2006) Statistical comparisons of classifiers over mul-

tiple data sets. J Mach Learn Res 7:1–30

36. Eigenvalues and eigenvectors. https://www.mathworks.com/help/

matlab/ref/eig.html. Accessed 17 Feb 2020

37. Bachmann P (1894) Analytische Zahlentheorie, vol 2. Teubner,

Leipzig (in German)

38. Landau E (1909) Handbuch der Lehre von der Verteilung der

Primzahlen. B. G. Teubner, Leipzig (in German)
39. Maillo J, Luengo J, Garcı́a S et al (2017) Exact fuzzy k-nearest

neighbor classification for big datasets. In: IEEE international

conference on fuzzy systems (FUZZ-IEEE)

40. Nikdel H, Forghani Y, Mohammad Hosein Moattar S (2018)

Increasing the speed of fuzzy k-nearest neighbours algorithm.

Expert Syst 35:e12254. https://doi.org/10.1111/exsy.12254

41. Tsang IWH, Kwok JTY, Zurada JM (2006) Generalized core

vector machines. IEEE Trans Neural Netw 17:1126–1140. https://

doi.org/10.1109/TNN.2006.878123

42. Buczak AL, Guven E (2016) A survey of data mining and

machine learning methods for cyber security intrusion detection.

IEEE Commun Surv Tutor 18:1153–1176. https://doi.org/10.

1109/COMST.2015.2494502

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

https://doi.org/10.1016/j.patcog.2019.06.001
https://doi.org/10.1016/j.patcog.2019.06.001
https://doi.org/10.1016/j.patrec.2018.11.004
https://doi.org/10.1016/j.patrec.2018.11.004
https://doi.org/10.1016/j.eswa.2018.08.050
https://doi.org/10.1016/j.eswa.2018.08.050
https://doi.org/10.1214/aoms/1177731944
https://www.mathworks.com/help/matlab/ref/eig.html
https://www.mathworks.com/help/matlab/ref/eig.html
https://doi.org/10.1111/exsy.12254
https://doi.org/10.1109/TNN.2006.878123
https://doi.org/10.1109/TNN.2006.878123
https://doi.org/10.1109/COMST.2015.2494502
https://doi.org/10.1109/COMST.2015.2494502

	A precise and stable machine learning algorithm: eigenvalue classification (EigenClass)
	Abstract
	Introduction
	Preliminaries and EigenClass algorithm
	Appreciating the performance of EigenClass in comparison with the well-known algorithms
	Comparative classification results
	Statistical evaluation
	Evaluation of processing time and computational complexity

	Conclusion
	References

