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 

Abstract— Fault current signals that are processed by digital 

relays consist of DC, fundamental, and harmonic components. 

Filtering algorithms are necessary to eliminate the DC and 

harmonic components from these signals. Several algorithms 

have been proposed for this task which vary in their accuracy, 

response time, and computational burden. The conventional 

Discrete Fourier Transform (DFT) can eliminate harmonics and 

is commonly used to estimate the fundamental frequency phasor. 

But its accuracy is lower as it does not filter the DC offset. Other 

algorithms including variants of DFT attempt to improve the 

accuracy and response time. This paper proposes a technique 

that takes into account the exponential variation of the DC offset 

and more accurately determines the fundamental component. 

The effectiveness of this method is evaluated by simulation on a 

2-machine system and also compared against existing phasor 

measurement methods. Simulations confirm that the proposed 

method can more accurately estimate the fundamental 

component compared to the existing methods.  

 
Index Terms— DC component, fundamental component, 

estimation  

I. INTRODUCTION 

 ROTECTION relays require the input voltage and current 

signals to be free from harmonics and DC components so 

that fault conditions can be more accurately detected. Filtering 

algorithms are necessary to extract the fundamental 

component from input signals that contain harmonics and DC 

components. The conventional Discrete Fourier Transform 

(DFT) is most commonly used to extract the fundamental 

components from the measured waveforms [1-6]. The DFT 

can eliminate the harmonic components but not the DC 

component. The DC component is a non-periodic signal that 

has a large frequency spectrum. It contributes to the overshoot 

and oscillations that are present in the estimation of the 

fundamental component when using the DFT giving rise to an 

error of around 15.1% [2]. 
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Several existing digital filtering algorithms estimate the 

fundamental component by eliminating the DC offset present 

in the measured current signals [1-7]. In the improved DFT 

algorithm proposed in [1], the fundamental component is 

estimated by obtaining the even and odd samples of the DFT 

for the fault current signal. This algorithm is more accurate 

than the conventional DFT as it eliminates the DC offset. 

However, it experiences a slow response time since it only 

carries out the estimation after one cycle and needs to perform 

extensive computations. In [2], a new DFT-based phasor 

estimation method is applied to fault current signals 

containing harmonics, noise, and DC components. This 

method uses a few basic mathematical operations to accurately 

estimate the fundamental frequency component but takes one 

cycle. A modified DFT-based phasor estimation algorithm 

was proposed in [3] to eliminate the effect of DC components 

on the fault current signal. It experiences minimal overshoot 

and provides a smooth transient response. It is also robust 

against noise, but takes one cycle to perform the estimation. 

An online algorithm to remove decaying DC offsets from fault 

current signals was proposed in [4]. It performs the estimation 

more accurately and efficiently than the conventional DFT 

method, but takes one cycle to carry out the estimation. An 

iterative algorithm proposed in [5] takes four consecutive 

samples of a sinusoidal input current signal to determine the 

fundamental and DC components. This method has a fast 

response time since it estimates and eliminates the DC offset 

from the fundamental component using just four samples. But 

it assumes the DC offset to be constant and therefore does not 

consider the exponential decay of DC offset that commonly 

occurs in fault current signals. In [6], a modified DFT-based 

phasor estimation method was proposed to eliminate the DC 

components from the fault current signal. This method 

accurately estimates and eliminates the DC component. 

However, it takes one cycle to perform the estimation and uses 

extensive computations. It is also sensitive to noise. In [7], an 

innovative algorithm for estimating and eliminating the DC 

component from a fault current signal was proposed. This 

algorithm has faster convergence and better accuracy than the 

conventional DFT. However, it is computationally more 

complex as it performs the estimation of the DC component 

using the Taylor series approximation.  

A number of dynamic phasor estimation algorithms have 

been proposed in [8-11] to estimate the phasor and eliminate 

both the DC offset and dynamic characteristics. In [8], an 

adaptive dynamic phasor estimation algorithm based on the 

modified empirical mode decomposition (EMD) technique 

was used to improve the accuracy of the phasor estimation. 
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This technique has high accuracy and convergence speed. 

However, the combination of the EMD technique with the 

Hilbert Transform (HT) is unable to completely eliminate the 

noise and high frequency components. It also takes 2.25 cycles 

to estimate. A dynamic phasor estimation algorithm for fault 

currents from DGs was proposed in [9]. This algorithm 

accurately estimates the decaying amplitude and time constant 

of the fundamental component. It also distinguishes between 

the decaying DC and fundamental components but takes more 

than one cycle to estimate. An adaptive dynamic phasor 

estimator was proposed in [11] to accurately estimate the 

phasor under dynamic and DC component conditions. This 

algorithm is computationally efficient and can be easily 

implemented in Phasor Measurement Unit (PMU) 

applications. However, it produces large errors due to the 

exponentially decaying DC offset and takes more than one 

cycle to compute. In [10], phasor and frequency estimators are 

proposed to remove errors due to dynamic characteristics 

and/or decaying DC components. These algorithms are 

sensitive to noise and take more than one cycle to estimate. 

This paper proposes a digital filtering algorithm that 

extends the method in [5] by considering the exponential 

decay of the DC offset as well as the harmonic and sub-

harmonic components. A signal averaging filter pre-processes 

the input signal to eliminate noise. The mathematical basis for 

the proposed algorithm is presented in this paper. The 

effectiveness of the algorithm is evaluated by simulation and 

also compared with the cosine [12] and improved DFT 

algorithms [1] as well as the iterative method [5]. 

The rest of this paper is organised as follows: The proposed 

algorithm is described in Section II. Section III briefly 

describes a 2-machine model used to test the proposed 

algorithm. Simulation results that evaluate the effectiveness of 

the proposed algorithm and also compare it with existing 

algorithms are presented in Section IV. Section V summarises 

the paper. 

II. PROPOSED ALGORITHM 

The proposed algorithm assumes that the DC offset decays 

exponentially unlike the iterative algorithm in [5] where the 

DC offset was assumed to be constant. The proposed 

algorithm is derived in this section for the case where the time 

constant is known as well as when it is unknown. The 

algorithm uses a known time constant to study the effect of the 

changing DC component parameters on the fundamental 

component. For processing an input fault current signal from 

the measurement device, it assumes an unknown time 

constant. The measurement signals also contain Gaussian 

noise with zero mean and varying standard deviations. 

A. Algorithm with Known Time Constants 

The input signal containing Gaussian noise is first 

processed by a signal averaging filter to eliminate the noise. 

This filter samples the entire input signal for a given number 

of times. All these samples are then summed at all sampling 

instances and the average of the samples obtained for the 

entire signal. The output signal from the signal averaging filter 

is then processed by the proposed algorithm to obtain the 

fundamental component magnitude. In this derivation of the 

algorithm, the time constant is assumed to be known. Fourteen 

consecutive samples are extracted from the fault current input 

signal which consists of DC, harmonic, sub-harmonic, and 

fundamental components. The input fault current signal can be 

expressed as the following equation: 

 

𝑖(𝑡) = 𝐴𝑑𝑐1𝑒𝑥𝑝 (−
(𝑡 + 𝑘∆𝑡)

𝜏1

) + 𝐴𝑑𝑐2𝑒𝑥𝑝 (−
(𝑡 + 𝑘∆𝑡)

𝜏2

)

+ 𝐴𝑎𝑐 sin(2𝜋𝑓(𝑡 + 𝑘∆𝑡))

+ ∑𝐴𝑎𝑐(2𝑖+1) sin(2(2𝑖 + 1)𝜋𝑓(𝑡 + 𝑘∆𝑡))

5

𝑖=1

+ ∑𝐴
𝑎𝑐

1
(2𝑗+1)

sin (
2

(2𝑗 + 1)
𝜋𝑓(𝑡 + 𝑘∆𝑡))

5

𝑗=1

 

  (1) 

where ∆𝑡 is the known sampling period, 𝑓 is the known 

system frequency, 𝜏 is the time constant of the DC component, 

𝑘 is the sampling constant that takes on values from 0 to 13. 

The fundamental frequency value is assumed to be known 

since it should always match the power system frequency. The 

unknown values are the amplitudes of the fundamental (𝐴𝑎𝑐), 

harmonic (𝐴𝑎𝑐(2𝑖+1)), and sub-harmonic (𝐴
𝑎𝑐

1
(2𝑗+1)

) 

components, DC component amplitudes of 𝐴𝑑𝑐1 and 𝐴𝑑𝑐2, and 

continuous time 𝑡. 

To discretise the general equation (1), let 𝑡 = 𝑛∆𝑡 and ∆𝑡 =

 
1

𝑁𝑓
 and thus 𝑡 =

𝑛

𝑁𝑓
 where 𝑛 is the sample number and 𝑁 is the 

number of samples in a cycle. To simplify the equation 

further, let 𝛼1 = 𝑒𝑥𝑝 (−
∆𝑡

𝜏1
) and 𝛼2 = 𝑒𝑥𝑝 (−

∆𝑡

𝜏2
). The resulting 

equation is as follows: 

 

𝑖(𝑛) = 𝐴𝑑𝑐1𝛼1
𝑛+𝑘 + 𝐴𝑑𝑐2𝛼2

𝑛+𝑘 + 𝐴𝑎𝑐 sin (
2𝜋

𝑁
(𝑛 + 𝑘)) +

∑ 𝐴𝑎𝑐(2𝑖+1) sin (
2(2𝑖+1)𝜋

𝑁
(𝑛 + 𝑘))5

𝑖=1 +

∑ 𝐴
𝑎𝑐

1
(2𝑗+1)

sin (
2𝜋

(2𝑗+1)𝑁
(𝑛 + 𝑘))5

𝑗=1  (2) 

 

The unknown values are 𝐴𝑑𝑐1, 𝐴𝑑𝑐2, 𝐴𝑎𝑐, sample number 𝑛, 

as well as the amplitudes of the third, fifth, seventh, ninth, and 

eleventh harmonics and sub-harmonics. The known values are 

𝛼1, 𝛼2, 𝑁, and 𝑘. The fourteen nonlinear equations were solved 

simultaneously using MATLAB’s fsolve function to obtain the 

unknown values. A window of fourteen consecutive time 

samples is moved across the time scale until the end of the 

time interval to improve the estimation accuracy. 

B. Algorithm with Unknown Time Constants 

The measurement signal that also contains noise would be 

processed by a Gaussian pulse-shaping filter to remove the 

noise before being input to the proposed algorithm. In the 

Gaussian pulse-shaping filter, the Gaussian function is 

convolved with the measurement signal. The derivation of the 

proposed algorithm is given below when the time constant 𝜏 is 

unknown. Harmonic, sub-harmonic, and additional DC 

components are not included as they would make the 

following derivation rather unwieldy. Four samples are 

extracted from the fault current input signal which consists of 

both DC and fundamental components. They are represented 
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by the following equations: 

  𝐴 = 𝑉𝑚 cos(2𝜋𝑓𝑡) + 𝐴𝑑𝑐𝑒𝑥𝑝 (−
𝑡

𝜏
)       (3) 

  𝐵 = 𝑉𝑚 cos(2𝜋𝑓(𝑡 + ∆𝑡)) + 𝐴𝑑𝑐𝑒𝑥𝑝 (−
(𝑡+∆𝑡)

𝜏
)  (4) 

  𝐶 = 𝑉𝑚 cos(2𝜋𝑓(𝑡 + 2∆𝑡)) + 𝐴𝑑𝑐𝑒𝑥𝑝 (−
(𝑡+2∆𝑡)

𝜏
)  (5) 

 𝐷 = 𝑉𝑚 cos(2𝜋𝑓(𝑡 + 3∆𝑡)) + 𝐴𝑑𝑐𝑒𝑥𝑝 (−
(𝑡+3∆𝑡)

𝜏
) (6) 

 

where 𝐴, 𝐵, 𝐶, and 𝐷 are the measured samples, ∆𝑡 is the 

known sampling period, 𝑓 is the known system frequency, and 

𝜏 is the time constant of the DC component. The unknown 

values are the fundamental component amplitude 𝑉𝑚, DC 

component amplitude 𝐴𝑑𝑐, and continuous time 𝑡. 

Let 𝑡 = 𝑛∆𝑡 and ∆𝑡 =  
1

𝑁𝑓
 and thus 𝑡 =

𝑛

𝑁𝑓
 where 𝑛 is the 

sample number and 𝑁 is the number of samples in a cycle. Let 

𝛼 = 𝑒𝑥𝑝 (−
∆𝑡

𝜏
). Equations (3) - (6) can be transformed as 

follows: 

  𝐴 = 𝑉𝑚 cos (
2𝜋𝑛

𝑁
) + 𝐴𝑑𝑐𝛼

𝑛       (7) 

     𝐵 = 𝑉𝑚 cos (
2𝜋

𝑁
(𝑛 + 1)) + 𝐴𝑑𝑐𝛼

𝑛+1   (8) 

     𝐶 = 𝑉𝑚 cos (
2𝜋

𝑁
(𝑛 + 2)) + 𝐴𝑑𝑐𝛼

𝑛+2   (9) 

    𝐷 = 𝑉𝑚 cos (
2𝜋

𝑁
(𝑛 + 3)) + 𝐴𝑑𝑐𝛼

𝑛+3   (10) 

Rearranging (7) – (10) using trigonometric identities to 

eliminate 𝐴𝑑𝑐 results in the following equations: 

 

𝐷 − 𝛼𝐶 = 𝑉𝑚 (cos (
2𝜋𝑛

𝑁
) (cos (

6𝜋

𝑁
) − 𝛼 cos (

4𝜋

𝑁
)) −

sin (
2𝜋𝑛

𝑁
) (sin (

6𝜋

𝑁
) − 𝛼 sin (

4𝜋

𝑁
)))        (11) 

 

𝐶 − 𝛼𝐵 = 𝑉𝑚 (cos (
2𝜋𝑛

𝑁
) (cos (

4𝜋

𝑁
) − 𝛼 cos (

2𝜋

𝑁
)) −

sin (
2𝜋𝑛

𝑁
) (sin (

4𝜋

𝑁
) − 𝛼 sin (

2𝜋

𝑁
)))     (12) 

 

𝐵 − 𝛼𝐴 = 𝑉𝑚 (cos (
2𝜋𝑛

𝑁
) (cos (

2𝜋

𝑁
) − 𝛼) −

sin (
2𝜋𝑛

𝑁
) sin (

2𝜋

𝑁
))     (13) 

 

By dividing (11) with (12) and (12) with (13) to eliminate 

𝑉𝑚, the following equations are obtained: 

 
𝐷−𝛼𝐶

𝐶−𝛼𝐵
=

cos(
2𝜋𝑛

𝑁
)(cos(

6𝜋

𝑁
)−𝛼 cos(

4𝜋

𝑁
))−sin(

2𝜋𝑛

𝑁
)(sin(

6𝜋

𝑁
)−𝛼 sin(

4𝜋

𝑁
))

cos(
2𝜋𝑛

𝑁
)(cos(

4𝜋

𝑁
)−𝛼 cos(

2𝜋

𝑁
))−sin(

2𝜋𝑛

𝑁
)(sin(

4𝜋

𝑁
)−𝛼 sin(

2𝜋

𝑁
))

  (14) 

 
𝐶−𝛼𝐵

𝐵−𝛼𝐴
=

cos(
2𝜋𝑛

𝑁
)(cos(

4𝜋

𝑁
)−𝛼 cos(

2𝜋

𝑁
))−sin(

2𝜋𝑛

𝑁
)(sin(

4𝜋

𝑁
)−𝛼 sin(

2𝜋

𝑁
))

cos(
2𝜋𝑛

𝑁
)(cos(

2𝜋

𝑁
)−𝛼)−sin(

2𝜋𝑛

𝑁
) sin(

2𝜋

𝑁
)

  (15) 

 

To eliminate 𝑛, rearrange (14) and (15) and divide both sides 

by cos (
2𝜋𝑛

𝑁
) to yield the following equations: 

tan (
2𝜋𝑛

𝑁
) =

(𝐷−𝛼𝐶)(cos(
4𝜋

𝑁
)−𝛼 cos(

2𝜋

𝑁
))−(𝐶−𝛼𝐵)(cos(

6𝜋

𝑁
)−𝛼cos(

4𝜋

𝑁
))

(𝐷−𝛼𝐶)(sin(
4𝜋

𝑁
)−𝛼 sin(

2𝜋

𝑁
))−(𝐶−𝛼𝐵)(sin(

6𝜋

𝑁
)−𝛼 sin(

4𝜋

𝑁
))

    (16) 

 

 tan (
2𝜋𝑛

𝑁
) = 

(𝐶−𝛼𝐵)(cos(
2𝜋

𝑁
)−𝛼)−(𝐵−𝛼𝐴)(cos(

4𝜋

𝑁
)−𝛼cos(

2𝜋

𝑁
))

(𝐶−𝛼𝐵)sin(
2𝜋

𝑁
)−(𝐵−𝛼𝐴)(sin(

4𝜋

𝑁
)−𝛼 sin(

2𝜋

𝑁
))

      (17) 

 

By equating (16) and (17), rearranging and simplifying the 

resulting equation, the following expression for 𝛼 is obtained 

as in (18): 

 

        𝛼 =
𝐷+𝐵−2𝐶 cos(

2𝜋

𝑁
)

𝐴+𝐶−2𝐵 cos(
2𝜋

𝑁
)
       (18) 

 

In this improved algorithm, four consecutive samples of 𝐴, 

𝐵, 𝐶, and 𝐷 are obtained from the measurement devices. The 

𝛼 value is then determined from (18) using the known values 

of 𝐴, 𝐵, 𝐶, 𝐷, and 𝑁. The values of 𝐴, 𝐵, 𝐶, 𝐷, 𝑁, and 𝛼 are 

substituted into (16) or (17). The known values of 𝑛, 𝑁, 𝛼, 𝐴, 

𝐵, 𝐶, and 𝐷 are substituted into equations (7) – (10). These 

equations are then solved simultaneously to obtain the 

unknown values 𝑉𝑚 and 𝐴𝑑𝑐 as given below. 

      [
𝑉𝑚
𝐴𝑑𝑐

] = [

𝐴
𝐵
𝐶
𝐷

] \

[
 
 
 
 
 
 
 cos (

2𝜋𝑛

𝑁
) 𝛼𝑛

cos (
2𝜋

𝑁
(𝑛 + 1)) 𝛼𝑛+1

cos (
2𝜋

𝑁
(𝑛 + 2)) 𝛼𝑛+2

cos (
2𝜋

𝑁
(𝑛 + 3)) 𝛼𝑛+3

]
 
 
 
 
 
 
 

  (19) 

III. TWO-MACHINE POWER SYSTEM MODEL DESCRIPTION 

The model used to evaluate the effectiveness of the 

proposed phasor measurement algorithm is a Two-machine 

system as shown in Fig. 1 and adapted from [5]. It consists of 

a synchronous generator connected to one end of the 

transmission line and an infinite bus at the other end. The 

synchronous generator is modelled as a diesel generator 

whereas the infinite bus is represented as a three-phase 

sinusoidal source. Static loads are connected to both ends of 

the transmission line. The parameters for the sources, 

transmission line, and loads are defined in Tables I and II. 

 
TABLE I 

PARAMETERS FOR THE SOURCES IN THE TWO-MACHINE SYSTEM 

Source Rated RMS L-N 
Voltage (kV) 

Rated RMS Line 
Current (kA) 

Initial 
Phase (rad) 

Synchronous 

Generator (SG) 

7.967 5.02 3.14 

Infinite Source 
(IS) 

7.9617  2.50 
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TABLE II 

PARAMETERS FOR THE IMPEDANCES IN THE 2-MACHINE SYSTEM 

Impedance Resistance (Ω) Reactance 

(H) 

Connection 

SG Impedance (𝑍𝑆𝐺) 1.02 0.105 R-L 

IS Impedance (𝑍𝐼𝑆) 1.0 0.1 R-L 

Transmission (𝑍𝑇𝐿) 0.91 0.0052 R-L 

Load 1 (𝑍𝐿1) 15   

Load 2 (𝑍𝐿2) 1.8   

IV. SIMULATION RESULTS 

Simulations were performed in MATLAB to evaluate the 

effectiveness of the proposed algorithm and compare it to the 

other existing algorithms. First the proposed algorithm that 

assumes a known time constant was evaluated using the test 

signal, 

𝑖(𝑡) = 𝐴𝑑𝑐1𝑒𝑥𝑝 (−
𝑡

𝜏1

) + 𝐴𝑑𝑐2𝑒𝑥𝑝 (−
𝑡

𝜏2

) + sin(2𝜋(50)𝑡)

+ 2 sin(6𝜋(50)𝑡) + 3 sin (
2

3
𝜋(50)𝑡)

+ 13 sin(10𝜋(50)𝑡) + 5 sin (
2

5
𝜋(50)𝑡)

+ 9 sin(14𝜋(50)𝑡) + 3 sin (
2

7
𝜋(50)𝑡)

+ 11 sin(18𝜋(50)𝑡) + 4 sin (
2

9
𝜋(50)𝑡)

+ 11 sin(22𝜋(50)𝑡) + 6 sin (
2

11
𝜋(50)𝑡)

+
1

𝜎√2𝜋
𝑒𝑥𝑝 (−

𝑧2

2𝜎2
) 

where 𝐴𝑑𝑐1 and 𝐴𝑑𝑐2 are the amplitudes of the 

exponentially decaying DC components; 𝜏1 and 𝜏2 are the 

exponential time constants; and 𝜎 and 𝑧 are the standard 

deviation and Gaussian random variable. The sampling 

frequency was set at 5 kHz and system frequency as 50 Hz.  

The proposed algorithm was compared with the cosine [12] 

and improved DFT methods [1] as well as the iterative method 

[5]. In the improved DFT method in [1], the fundamental 

component is estimated by obtaining even and odd samples for 

both the AC and DC components of the conventional DFT for 

the fault current signal. The odd samples are subtracted from 

the even samples for the AC and DC components. The AC and 

DC terms are summed and then their amplitude is calculated 

before the AC component magnitude is determined by the 

following equation: 

         𝐴1 ≈
|𝐴𝑒𝑠𝑡

𝑒−𝑜(𝑛)|

2 sin(
𝜋

𝑁
)

       

The proposed algorithm with the unknown time constant as 

described in Section II.B was evaluated using MATLAB 

Simulink on the 2-machine system model of Section III.  when 

a 2-ph-G fault occurs on bus 1. Measurements of the input 

current signal were made on the faulted bus so that the DC and 

fundamental components of the signal could be computed by 

the algorithm. Gaussian noise with zero mean and standard 

deviations of 0.1, 1.0, and 2.0 was added to the measurement 

signal on bus 1. 

A. Comparison with Existing Algorithms 

Fig. 2 shows the output of the fundamental component by 

the proposed algorithm along with those of the cosine, 

improved DFT, and iterative algorithms. The proposed 

algorithm estimates the fundamental component as 1pu after 

the time required for fourteen samples at the beginning of the 

first cycle. The estimation using the cosine method gives 1pu 

after 1.25 cycles. On the other hand, the improved DFT gives 

the estimate as 1pu after one cycle. The estimate by the 

iterative method is 49.5529pu after four samples. Compared to 

the cosine and improved DFT methods, the proposed 

algorithm is faster since it produces the output after fourteen 

samples at the beginning of the first cycle. The iterative 

algorithm requires only four samples but it is less accurate. 

 

B. Variations in Time Constants, DC Offset Magnitudes, and 

Standard Deviations of the Gaussian Noise 

The effect of the variation in the time constants 𝜏1 and 𝜏2, 

DC offset magnitudes 𝐴𝑑𝑐1 and 𝐴𝑑𝑐2 , and standard deviation 

of the Gaussian noise 𝜎 on the estimation of the fundamental 

component magnitude was evaluated by simulation. For 𝐴𝑑𝑐1 

(𝐴𝑑𝑐2), the values of 0.5 (0.7), 1.0 (1.2), and 1.5 (1.7) were 

used to evaluate the effect of small variations on the 

estimation of fundamental component magnitude. The values 

of 𝜏1 (𝜏2) were chosen as 0.5 (0.7), 1.0 (1.2), and 1.5 (1.7) so 

that the incremental effect of the DC decaying time on the 

fundamental component magnitude can be evaluated. The 𝜎 

values of 0.1, 1.0, and 2.0 were used to evaluate the effect of 

small changes in the standard deviation of the Gaussian noise. 

Figs. 3 and 4 show the fundamental components from the 

different phasor measurement algorithms for 𝜏1 (𝜏2) values of 

1.0 (1.2) and 1.5 (1.7) respectively assuming that 𝐴𝑑𝑐1 = 0.5 

(𝐴𝑑𝑐2 = 0.7) and 𝜎 = 0.1 are fixed. Figs. 5 and 6 show the 

results from various algorithms for 𝐴𝑑𝑐1 (𝐴𝑑𝑐2) values of 1.0 

(1.2) and 1.5 (1.7) respectively when 𝜏1 = 0.5 (𝜏2 = 0.7) and 

𝜎 = 0.1 are unchanged. The fundamental components from 

various algorithms are shown in Figs. 7 and 8 for 𝜎 values of 

0.1, 1.0, and 2.0 for fixed values of 𝜏1 = 0.5 (𝜏2 = 0.7) and 

𝐴𝑑𝑐1 = 0.5 (𝐴𝑑𝑐2 = 0.7). 

For the proposed algorithm, the fundamental component 

output remains at 1pu for all values of 𝜏1 (𝜏2), 𝐴𝑑𝑐1 (𝐴𝑑𝑐2), 

and 𝜎 that were considered. The outputs of the iterative 

algorithm are 47.6060pu and 45.3444pu for 𝜏1 (𝜏2) values of 

1.0 (1.2) and 1.5 (1.7) respectively; for 𝐴𝑑𝑐1 (𝐴𝑑𝑐2) values of 

1.0 (1.2) and 1.5 (1.7), the outputs are 47.9354pu and 

50.3343pu respectively; for 𝜎 values of 1.0 and 2.0, the 

outputs are 345.8030pu and 45.4698pu respectively. The 

iterative algorithm does not consider the exponentially varying 

DC offsets, harmonic and sub-harmonic components, or the 

noise.  

2-ph-G 
Fault 

𝑍𝐿1 𝑍𝐿2 

𝑍𝑇𝐿 

𝑍𝐼𝑆 𝑍𝑆𝐺 

SG IS 

Fig. 1. Diagram of Two-machine test system. 
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Fig. 5. Fundamental component measurement for the different 

phasor measurement algorithms for 𝜏1 = 0.5, 𝜏2 = 0.7, 

𝐴𝑑𝑐1 = 1, 𝐴𝑑𝑐2 = 1.2, and 𝜎 = 0.1. 

Fig. 3. Fundamental component measurement for the different 

phasor measurement algorithms for 𝜏1 = 1, 𝜏2 = 1.2, 𝐴𝑑𝑐1 =
0.5, 𝐴𝑑𝑐2 = 0.7, and 𝜎 = 0.1. 

Fig. 4. Fundamental component measurement for the different 

phasor measurement algorithms for 𝜏1 = 1.5, 𝜏2 = 1.7, 

𝐴𝑑𝑐1 = 0.5, 𝐴𝑑𝑐2 = 0.7, and 𝜎 = 0.1. 

Fig. 2. Fundamental component measurement for the different 

phasor measurement algorithms for 𝜏1 = 0.5, 𝜏2 = 0.7, 

𝐴𝑑𝑐1 = 0.5, 𝐴𝑑𝑐2 = 0.7, and 𝜎 = 0.1. 
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Both the cosine and improved DFT methods assume that 

the harmonic and sub-harmonic components are filtered before 

extracting the fundamental component. These two methods 

only deal with one exponentially decaying DC component. For 

the cosine method, the output fluctuates between 0.9999-

1.0001pu for 𝐴𝑑𝑐1 (𝐴𝑑𝑐2) values of 1.0 (1.2) and 1.5 (1.7) and 

remains close to 1pu for the other cases considered above. In 

the improved DFT method, the fundamental component output 

is close to 1pu since the exponential term has a much lower 

value compared to the conventional DFT method. The 

proposed algorithm estimates the fundamental component 

magnitude more accurately compared to the other methods for 

all values of 𝜏1, 𝜏2, 𝐴𝑑𝑐1, 𝐴𝑑𝑐2, and 𝜎 considered in this 

evaluation. 

 

C. Simulation of Proposed Algorithm on 2-Machine System 

The proposed algorithm in Section II.B that assumes the 

time constant to be unknown was simulated on bus 1 in the 2-

machine system to evaluate its effectiveness in separating the 

fundamental and DC components of the fault current. Fig. 9 

shows the input current signals where phases A and B 

increases during the fault. The fundamental and DC 

components are shown in Fig. 10 when 𝜎 is 0.1. The DC 

component for phase B increases and decays steadily at the 

start and end of the fault. On the other hand, at the beginning 

and end of the fault, the phase A DC component is shown as 

decreasing and then increasing steadily until it is zero since 

phase A lags phase B by 120°.  

 

 

Fig. 6. Fundamental component measurement for the different 

phasor measurement algorithms for 𝜏1 = 0.5, 𝜏2 = 0.7, 

𝐴𝑑𝑐1 = 1.5, 𝐴𝑑𝑐2 = 1.7, and 𝜎 = 0.1. 

Fig. 8. Fundamental component measurement for the different 

phasor measurement algorithms for 𝜏1 = 0.5, 𝜏2 = 0.7, 

𝐴𝑑𝑐1 = 0.5, 𝐴𝑑𝑐2 = 0.7, and 𝜎 = 2.0. 

Fig. 7. Fundamental component measurement for the different 

phasor measurement algorithms for 𝜏1 = 0.5, 𝜏2 = 0.7, 

𝐴𝑑𝑐1 = 0.5, 𝐴𝑑𝑐2 = 0.7, and 𝜎 = 1.0. 
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The fundamental component for phases A and B have 

smoothly increasing magnitudes at the beginning of the fault, 

stays constant during the fault, and decreases at the end of the 

fault following a spike. Hence the proposed algorithm can 

effectively separate out the fundamental and DC components 

from the input current signals. Fig. 11 shows the fundamental 

frequency component of the input signal in sinusoidal form 

when 𝜎 is 0.1. This output waveform is very close to the input 

waveform in Fig. 9 since the peak of the DC component 

shown in Fig. 10 is only about 13% of the fundamental 

frequency component magnitude. However, the estimated 

fundamental component values at 0.038s and 0.102s are 

different to the estimated values between these times. This is 

because the four consecutive samples were taken during the 

transitions between faulted and normal conditions. The results 

for 𝜎 values of 1.0 and 2.0 are not shown since they are 

similar to the case of 𝜎 = 0.1. 

 

D. Discussions 

The proposed algorithm is more accurate compared to the 

other methods in estimating the fundamental component 

amplitude. The estimate by the proposed algorithm is 

unaffected by changes in time constants, DC offset 

magnitudes, harmonic and sub-harmonic magnitudes, as well 

as varying standard deviations of Gaussian noise. The iterative 

algorithm is less accurate since it does not deal with the 

exponentially varying DC offsets, harmonic and sub-harmonic 

components, or the Gaussian noise. The improved DFT and 

cosine methods estimate the fundamental component 

Fig. 9. Input current signal on Bus 1 in Two-machine system. 

Fig. 10. Fundamental and DC components for the current 

signal on Bus 1 in Two-machine system for the improved 

method. 

Fig. 11. Fundamental component for current signal on Bus 1 

in Two-machine system. 
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magnitude with only small fluctuations from the correct value 

as they reduce the effect of the DC offset and are unaffected 

by harmonics, sub-harmonics, and noise.  

The iterative and proposed algorithms have faster response 

times compared to the cosine and improved DFT methods. 

The proposed algorithm also accurately estimated the DC 

offset and fundamental component of the input fault current 

when simulated in a 2-machine system. 

V. CONCLUSIONS 

This paper proposed a new algorithm that more accurately 

estimates the fundamental component of fault current signals 

by taking fourteen samples at the beginning of the first cycle. 

Unlike the iterative algorithm, it correctly deals with the 

exponentially varying DC components, harmonics, 

subharmonics, and noise in the input current signal. The 

proposed algorithm was evaluated against the cosine and 

improved DFT methods as well as the iterative algorithm by 

simulation. The simulation results showed that the proposed 

algorithm is more accurate than the iterative method. The 

cosine and improved DFT methods are nearly as accurate but 

they require a cycle or more to produce the output. The 

proposed algorithm can also accurately estimate the 

fundamental component amplitude even when there are 

variations in the time constant and DC offset amplitude. It is 

significantly faster than the existing dynamic phasor 

estimation algorithms which take more than one cycle to 

estimate. The algorithm proposed in this paper will be useful 

in digital relaying schemes since it can accurately and quickly 

estimate the fundamental component for detecting and 

clearing fault conditions that occur in power systems. 
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