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Abstract Wireless sensor networks (WSNs) are used for
several commercial and military applications, by collecting,
processing and distributing awide range of data.Maximizing
the battery life of WSNs is crucial in improving the per-
formance of WSN. In the present study, different variations
of genetic algorithm (GA) method have been implemented
independently on energy models for data communication of
WSNs with the objective to find out the optimal energy (E)
consumption conditions. Each of the GA methods results in
an optimal set of parameters for minimum energy consump-
tion in WSN related to the type of selected energy model
for data communication, while the best performance of the
GA method [energy consumption (E = 3.49 × 10−4 J)] is
obtained in WSN for communication distance (d) ≥87m in
between the sensor cluster head and a base station.

Keywords Wireless sensor network · Genetic algorithm ·
Data communication · Energy optimization

1 Introduction

Wireless sensor network (WSN) is one of the leading tech-
nology trends since last fewyears. It has been used effectively
for situation monitoring by using a number of sensor nodes
[1–3]. WSNs have been employed in tough terrains to ana-
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lyze data used for habitat monitoring, disaster relieves and
target tracking etc. [4,5]. Energy efficiency [6] and data
robustness, integrity and confidentially of networks [4–7]
are significant features to judge the quality of a WSN. Sen-
sor nodes contribute in communication, signal processing,
and self-organization in order to build a robust, scalable,
energy efficient and long-lived WSN [8–10]. Though few
constraints in WSNs, like developing multi-hop communi-
cation and autonomous aerial vehicle technology, routing
in dense and difficult terrain, monitoring of resource lim-
ited systems, data management, collection and analysis, and
optimization of energy consumption etc. need to be resolved
[1–3]. Amongst these, energy consumption optimization is
one of the key areas of research in WSN [11–15]. Moreover,
the data communication inWSN consumesmore energy than
the sensing, data processing [16–20]. Consequently, effective
energy optimization techniques are required to minimize the
energy consumption in the communication process in WSN.

Some of the recent research reports in published literature
describe energy optimization of WSN using nature inspired
artificial intelligence (AI) methods [19–26], such as genetic
algorithm (GA) is used to achieve an ideal set of parame-
ters including lifetime and energy consumption for routing
[19]; in another related study, a multi-objective GA method
is proposed in the design of energy efficient WSNs by opti-
mizing the network lifetime [20]; improved particle swarm
optimization (IPSO) and virtual force algorithm (VFA) is
implemented to solve the problem with sensor nodes posi-
tioning [21]; ant-based routing algorithm is proposed for
minimizing energy efficiency (9%) [22]; performance of the
GA, honey bees, and fireflies swarm intelligence algorithms
is compared in optimization of energy cost, sensitivity area,
and network reliability [23]; harmony search based energy
efficient routing algorithm is developed [24]; artificial bee
colony (ABC) algorithm is implemented for optimization
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of sensing data collection path with the objective to min-
imize the energy consumption [25]; a generic GA-based
optimization is developed for fast and automatic energyman-
agement [26].

WSNs systems subjected to energy consumption con-
straints, besides extending the sensor node battery lifetime is
of an utmost importance in ensuring the network autonomy
[7]. Nature inspired AI methods based software approaches
presents a reasonable and quick solution for performance
optimization of WSNs [19,20,22–26]. Though the choice of
an effective AI method is crucial that selects the best com-
bination of parameters out of several possibilities. GA is a
widely used and one of the fast and intelligent optimization
methods which search and select the best combination of
dependent parameters for the minimization of power con-
sumption in WSNs [19,20,23,26].

We hardly noticed few studies based on the application
of GA method for optimization of energy related parame-
ters during the receiving and transmission of data from the
WSNs. This is the main motivation behind the present study
to implement GA method on three different energy models
(used to characterize the data transmission and receiving) of
WSNs with the objective to calculate the least amount of
energy spent by sensor nodes during data communications.
More specifically, we considered two energymodels [36,37];
each of them describes the energy consumption inWSNs as a
function of packet payload and header size, overhead symbol
rate, circuit depletion of the sender and receiver, and ampli-
fier coefficients. The details of energy models are discussed
in the next section. The rest part of the paper is organized as
follows. Energy optimization procedure inWSN using GA is
briefed in Sect. 3 and Sect. 4 describes the analysis outcomes,
and main findings of the study are concluded in Sect. 5.

2 Selected energy models of wireless sensor
network

Energy minimization is one of the most critical considera-
tions in the design of sensor nodes in WSN. Since energy is
in a very limited supply, the design of sensor node should
take into consideration for the maximization of battery life-
time [27]. Energy is consumed in suchnodes through sensing,
processing and power units [9]. Each of the power units has
three states: idle, sleep and active, and the power consump-
tion in each unit depend on the state [27]. Several energy
conservation methods have been developed for WSNs like
probabilistic model based on Petri nets to evaluate the energy
consumption [28], a brief assessment of several methods
with the objective to minimize the energy intake in hybrid
WSN [29], and an energy model for WSNs using a simulator
(IDEA1) [30].

The aforesaid methods have been implemented using the
communication protocol stackmodel consisting of a physical
layer, data link layer, network layer, transport, and appli-
cation layer. The physical layer is responsible for carrier
frequency generation, signal detection, modulation, and data
encryption. Energy consumptionmodels in the physical layer
have been discussed in several research studies [31–33], by
considering the energy consumption due to transmitting and
receiving sensory data [31,34]. Melodia et al. [35] detailed
a model for energy consumption per bit at the physical layer
as

Eb = Etrans + βdα + Erec (1)

where Etrans is a distance-independent term related to trans-
mitter electronics and digital processing, Erec relates to
receiver electronics, βdα is a distance-independent term that
accounts for radiated power needed to transmit a bit over
distance(d)between source and destination, α (2 ≤ α ≤ 5)
is path loss and β (J/(bit × mα))is a constant. In another
related model, by Raghunathan et al. [36], energy cost for
transmitting one bit of information has been formulated, as
a function of packet payload size (L), header size (H), fixed
overhead (Estart) associated with the radio startup transient
and symbol rate (Rs) for a M-ary modulation scheme. The
energy model is denoted by Eq. 2.

Ebit = (Estart/L+Pelec) + (PRF (M)/Rs log2 M)(1+H/L)

(2)

where Pelec represents power consumption of electronic cir-
cuitry for frequency synthesis, filtering, and modulating,
Estart = 1µJ, Pelec = 12mW, PRF = 1mW, RS =
1Mbaud, H = 16 bits and Modulation M = 1−8. In
another study [37], a low-energy adaptive clustering hier-
archy (LEACH) algorithm is proposed for WSNs. It selects
a few sensor nodes as cluster heads such that the distance
between the cluster head and sink is greater than between
the sink and the other sensor nodes in which the cluster head
is located [37]. According to LEACH protocol, the energy
cost increases as the distances between nodes increases [37].
The energy required to transmit and received k-bit of data is
defined in Eq. 3 as

Erx(k, d) = kEelec + kε f x d2 d < d0
kEelec + kε f x d4 d ≥ d0

ER X (k) = kEelec

EDA(k) = kEda

⎫
⎪⎪⎬

⎪⎪⎭

(3)

where Eelec represents circuit depletion of sender and
receiver, ε f s and εmp are amplifier coefficients of free-space
and multi-path fading model respectively, and Eda is the
energy consumption to compress unit data [37].
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In a simulation study [38], associated parameters of
Eq. 3 have following assumed values: Eelec = 50/nJ bit,
ε f s = 10 pJ/bit/m2, εmp = 0.0013 pJ/bit/m4, Eda =
5 nJ/bit/signal and d0 = 87m. The present research, anal-
yses energy model described in Eqs. 2 and 3. Since Eqs. 2,
and 3 define energy consumption in both micro and standard
operation ofWSN.Moreover, for easiness, the energy model
described in Eq. 3 is parted into two sub-models according
to the distance(d) between the sensor cluster head and the
base station (i) d < 87m, and (ii) d ≥ 87m. Consequently,
two new energy sub-models have been introduced as

Erx(k, d) = kEelec + kεfxd2

ERX(K ) = KEelec

EDA(K ) = KEda

⎫
⎬

⎭
d < d0 (4)

Erx(k, d) = k Eelec + kεmpd4

ERX(K ) = K Eelec

EDA(K ) = KEda

⎫
⎬

⎭
d ≥ d0 (5)

Later, GAmethod is implemented on the three energymodels
represented in Eqs. 2, 4 and 5 with the objective to obtain the
optimumconditions for theminimumconsumption of energy
in WSN.

3 Energy optimization in wireless sensor network
using genetic algorithm

GA is a directed search algorithm based on the mechanics
of biological evolution, developed to understand the adap-
tive processes of a natural system and to design artificial
systems that hold the robustness of natural systems [39].
GA is an effective technique for optimization and machine
learning applications. It is widely used at present in busi-
nesses, scientific and engineering applications [39–41] by
using a random search approach to a decision through selec-
tion,mutation, and crossover operators [39]. The local optima
can be escaped and global search is accomplished by using
a different combination of parameters like crossover type,
population size, mutation rate etc. [41]. Another advantage
of using GA is that it is effective for both continuous and
discrete variables.

Some of the basic operations of GA are as follows. GA
operation starts with an initial population of chromosomes.
Each chromosome consists of genes with each gene being
an instance of a particular allele (e.g., 0 or 1) [39]. The
selection operators were used to choose chromosomes in
the population to reproduce. A new population is selected
by two methods, namely steady state GA and generational
GA [42]. In the steady state GA, one or two individuals of
the population were replaced while the latter replaces all
of the individuals at each generation. The second method
is used in the present analysis. The fitness function in GA

Fig. 1 A simple schematic representation of GA

ranks chromosome, according to their qualification for the
survival and further reproduction. It is decided according
to the problem for which GA is implemented. E.g. energy
models have been considered to decide the fitness function
in the present analysis. The selection operator in GA selects
individual chromosome in the population for reproduction
[39]. Selection of chromosomes for reproduction is based
on the fitness value. In the present study uniform, stochastic
uniform, roulette, and tournament selection operator were
inspected. Mutation operator flips, randomly some of the
allele (bits) in the chromosome. Amutation can occur at each
bit position in a string with some probability (usually very
small, e.g., 0.001) [39]. Constraint dependent, uniform, and
adaptive feasible based mutation function have been used in
the present analysis. Crossover is the foremost step of pro-
ducing a new population. It selects a pair of parents from
the current population determined by the selection process
to generate new children for the next generation [39]. This
process continues until the desired size of the new popula-
tion is achieved. A locus is selected and used to exchange
the subsequences before and after the locus between the
two chromosomes to produce two offspring [39,42]. In the
present study, constraints dependent, two points, single point,
and heuristic crossover methods have been used. The details
of GA are available in [39–42], though a simple illustration
is shown in Fig. 1.
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Table 1 Summary of GA methods used in energy optimization

GA method no. Mutation method Selection method Crossover method Mutation probability

1 Constraint dependent Stochastic uniform Constraint dependent 0.05

2 Constraint dependent Stochastic uniform Two point 0.05

3 Constraint dependent Stochastic uniform Single point 0.03

4 Constraint dependent Stochastic uniform Heuristic 0.05

5 Constraint dependent Uniform Constraint dependent 0.04

6 Constraint dependent Roulette Constraint dependent 0.03

7 Constraint dependent Tournament Constraint dependent 0.02

8 Uniform Stochastic uniform Constraint dependent 0.05

9 Uniform Stochastic uniform Two point 0.04

10 Uniform Stochastic uniform Single point 0.05

11 Uniform Stochastic uniform Heuristic 0.05

12 Uniform Uniform Constraint dependent 0.04

13 Uniform Roulette Constraint dependent 0.06

14 Uniform Tournament Constraint dependent 0.07

15 Adaptive feasible Stochastic uniform Constraint dependent 0.06

16 Adaptive feasible Stochastic uniform Two point 0.04

17 Adaptive feasible Stochastic uniform Single point 0.05

18 Adaptive feasible Stochastic uniform Heuristic 0.07

19 Adaptive feasible Roulette Single point 0.06

20 Adaptive feasible Tournament Constraint dependent 0.03

Optimization methods have been recognized as signifi-
cant tools to resolve the limited battery power issue inWSNs
[20–26] in order to attain the optimum cost of network load,
reliability, and energy efficiency. Though, amongst other
optimizationmethods, GA results in better solutions as avail-
able in some studies [19,20,26]. Accordingly, based on the
outcomes of past studies and basic assumption of GA like
parallelism, efficient in working with the inconsistent and
noisy fitness landscape, etc., it is implemented to handle the
global optimization of energy in WSN in the present study,
though this basis is not proven.

In order to find the optimum conditions for the min-
imum energy consumption, twenty different variations of
GA have been designed and used in the analysis of energy
models described in Eqs. (2), (4) and (5). For instance, the
first GA model is based on constraint dependent mutation
function with mutation probability Pm = 0.05, stochastic
uniform selection method, constraint dependent crossover,
and default values of the rest of the parameters. The details
of other GA methods used in the analysis are summarized in
Table 1.

GA models have been designed by using different com-
binations of operations (i) mutation, (ii) selection, and (iii)
crossover. Specifically, three mutation functions, four selec-
tion functions, and four crossover functions have been used,
more details are as follows. Three mutation functions have
been used in the analysis include constraint dependent,

uniform, and adaptive feasible. The constraint dependent
mutation function uses a Gaussian distribution if there is no
constraint; uniform mutation function chooses a segment of
individual and thereafter interchanges it for mutation; while
the adaptive feasible mutation function randomly generates
directions that are adapted with respect to the last successful
or unsuccessful generation [39–42].

Stochastic uniform, uniform, Roulette wheel, and tour-
nament selection methods have been used in the analysis.
The stochastic uniform selection method sets a line in which
each parent corresponds to a section of the line of length
proportional to its expectation; the uniform selection method
selects parents at random from a uniform distribution using
the expectations and the number of parents; Roulette wheel
selection method simulates a roulette wheel with the area of
each segment proportional to its expectation; and the tour-
nament selection method selects each parent by choosing
individuals at random, the number of which can be specified
by tournament size, and then choosing the best individual to
be a parent [39–42].

Four crossover functions have been used in the anal-
ysis include constraint dependent, single point, two point
and heuristic. The constraint dependent crossover function
chooses for non-linear constraints, and intermediates for lin-
ear constraints; single point crossover selects vector entries
≤n (randomnumber between 1 and number of variable) from
the first parent and >n from the second parent to form the
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Table 2 GA outcomes for three energy models respectively

Energy model 1 (Eq. 2) Energy model 2 (Eq. 4) Energy model 3 (Eq. 5)

L M Iteration Energy value k d Iteration Energy value k d Iteration Energy value

1000 1.00 147 −6.43 × 10−6 2000.00 1.00 85 0.0007 2000 87 63 3.49 × 10−4

997.4 0.98 200 −3 × 10−6 2000.12 1.04 62 0.0007 2000 87 62 3.49 × 10−4

999.9 0.99 150 −2.61 × 10−7 2000.23 1.11 51 0.0007 2000 87 61 3.49 × 10−4

916.3 0.99 51 −1.97 × 105 2000.00 1.00 72 0.0007 2000 87 64 3.49 × 10−4

749.1 1.00 103 −0.24426 2000.00 1.00 67 0.0007 2000 87 66 3.49 × 10−4

930.7 1.00 181 −0.00384 2000.00 1.02 78 0.0002 2000 87 62 3.49 × 10−4

856.2 0.99 51 −1.71 × 10−5 2000.00 1.05 87 0.0002 2000 87 92 3.49 × 10−4

943.3 1.00 180 −1.37 × 10−7 2000.12 1.12 76 0.0002 2000 87 65 3.49 × 10−4

1000 1.00 200 −5.53 × 10−8 2000.11 1.08 72 0.0002 2000 87 51 3.49 × 10−4

998.1 1.00 198 −1.98 × 10−7 2000.00 1.00 67 0.0002 2000 87 67 3.49 × 10−4

999.9 1.00 82 −0.00292 2000.11 1.00 51 0.0002 2000 87 54 3.49 × 10−4

993.9 0.98 192 −7.51 × 10−7 2000.00 1.00 73 0.0002 2000 87 58 3.49 × 10−4

1000 1.00 121 −0.02208 2000.00 1.00 87 0.0002 2000 87 62 3.49 × 10−4

999.6 0.99 146 −0.273 2000.00 1.00 92 0.0002 2000 87 76 3.49 × 10−4

999.9 0.99 51 −0.363 2000.21 1.08 83 0.0002 2000 87 71 3.49 × 10−4

996.3 0.99 51 −1.93 × 10−6 2000.00 1.13 65 0.0002 2000 87 55 3.49 × 10−4

992.3 0.96 51 −2.97 × 10−6 2000.00 1.11 73 0.0002 2000 87 86 3.49 × 10−4

847.0 1.00 200 −3.06 × 10−7 2000.00 1.04 61 0.0002 2000 87 61 3.49 × 10−4

999.8 0.92 61 −1.96 × 10−5 2000.00 1.09 91 0.0002 2000 87 64 3.49 × 10−4

910.2 1.00 73 −1.28 × 10−6 2000.00 1.02 59 0.0002 2000 87 67 3.49 × 10−4

child; while two point crossover selects two random numbers
m and n; and heuristic crossover method creates children that
randomly lie on the line comprising the two parents [39–42].
Sixty independent simulations in MATLAB for twenty GA
methods (Table 1) on three energy models for data commu-
nication inWSN have been accomplished. The analysis time
for simulation is affected by the several factors, including
the energy models, mutation, selection and crossover meth-
ods and their combination. In all the cases implemented GA
methods results in an optimal solution in a few seconds.
Though, sometimes crossover after the mutation results in
less analysis time.

4 Analysis results

The analysis outcomes for sixty simulations have been sum-
marized in Table 2. The best fitness functions for each of
three energy models for data communication in WSNs (Eqs.
2, 4, 5) respectively are represented in Figs. 2, 3 and 4. Each
of the Figs. plots a fitness value (value of the fitness func-
tion i.e. energy function) versus the number of generations.
The best and mean parameters are the minimum and aver-
age values of energy used in data communication in WSNs.
The minimum energy consumption for model 1 (Eq. 2) is

Fig. 2 Fitness value representation of energy model 1 (Eq. 2) using
the GA method no. 9

−5.53× 10−8 J, with a modulation (M) of 1 and packet size
(L) of 1000 bits over 200 iterations using the GA method
no. 9 (Table 1). The negative sign in the value shows that the
system is bound unless it can acquire energy. GAmethod no.
9 is designed by using uniform mutation (mutation rate of
0.04), stochastic uniform selection, and two point crossover
methods (Table 1).

123



S. K. Jha, E. M. Eyong

Fig. 3 Fitness value representation of energy model 2 (Eq. 4) using
the GA method no. 11

Fig. 4 Fitness value representation of energy model 3 (Eq. 5) using
the GA method no. 9.

The variation of mean fitness and best fitness of the pop-
ulation over the generation for GA method no. 9 is shown in
Fig. 2. It represents that the mean fitness values are always
less than or equal to best fitness values, though the differ-
ence of two fitness values decreases over the generation
and becomes zero once the best solution is achieved. The
maximum energy consumption of the same energy model
is −0.363J with a modulation (M) of 0.99 and packet size
(L) of 1000bits over 51 iterations using the GA method
no. 15 (Table 1). GA method no. 15 is designed by using
adaptive feasible mutation (mutation rate of 0.06), stochastic
uniform selection, and constraint dependent crossover meth-
ods (Table 1). Hence, the best performance is achieved in
terms of minimum energy for energy model described in

Eq. 2 using the GA method no. 9. The other GA methods
result in average performance.

In the case of energy model 2 (Eq. 4), the minimum con-
sumption of energy is 0.0002 J (Table 2) with a distance
(d) of 87 meters and packet size (k) of 2000 bits over 51
iterations using the GA method no. 11 based on uniform
mutation (mutation rate of 0.05), stochastic uniform selec-
tion, and heuristic crossover methods and a mutation rate of
0.05 (Table 1). Other GA methods, except GA method no.
1–5 result in the same value of energy consumption, though,
the GAmethod no. 11 can be selected as the optimal method
since it achieves the best solution in a minimum number of
iterations (51) compared to other methods. The GA method
no. 1–5 result in maximum energy consumption 0.0007 J
(Fig. 3, Table 2) which is 3.5 times greater than the energy
value achieved by rest of GA methods. Though amongst GA
method no. 1–5, GA method no. 3 is ideal method due to a
minimum number of iterations (51) to achieve the best solu-
tion while GA method no. 1 require a minimum number of
iterations (85) to attain the comparable solution. Figure 3
shows the variation of mean and best fitness values of the
population over the generation using the GA method no. 11
for the energy model 2 (Eq. 4). The difference of two fitness
values decreases over the generation and becomes zero once
the best solution is achieved similar to Fig. 2.

The minimum energy consumption for energy model 3
(Eq. 5) is equal to 0.000349 J (Table 2) with a distance (d)
of 1 meter and packet size (k) to 2000 bits over 51 iterations
using GAmethod no. 9. The other GAmethod used in analy-
sis results in the same value of energy consumption, though,
the GA method no. 9 is selected since it requires a minimum
number of iterations (51) to achieve the best solution. Figure 4
demonstrates the variation of mean and best fitness values of
the population over the generation using the GA method no.
9 for the energy model 3 (Eq. 5). Their difference decreases
over the generation and turns into zero after the best solution
have been accomplished. GA method no. 9, 11, and 9 results
in the minimum energy consumption conditions for the three
energymodels respectively. Though theGAmethod no. 9 can
be considered as the common method to search the energy
optimization conditions for all three selected data commu-
nication energy models of WSN, since the GA method no.
9 require only 21 additional iterations to achieve the similar
value of energy consumption than the GA method no. 11 for
the energy model 2 (Eq. 4).

For the energy model 2 (Eq. 4) with distance d < 87m,
the minimum energy obtained in the present study is equal to
0.0002 J which is 0.04% of the total energy in a sensor node
(0.5 J) [38]. The minimum energy achieved in the present
analysis, for energy model 3 (Eq. 5) is equal to 0.000349 J
for distance d ≥ 87m, which is 0.0698% of the total energy
in a sensor node. The comparison of minimum energy values
obtained from the GA analysis of energymodels 2 and 3with
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real sensor node energy verifies the better performance of the
GA in WSN energy optimization.

The scope of the present study is to propose an optimal
GA method by selecting a proper combination of mutation,
crossover and selection methods in searching the ideal set
of parameters responsible for minimum energy consump-
tion during data communication in WSN. The latter part is
completed by selecting three recognized data communication
energy model of WSN. Several published research reports in
literature target the energy optimization of WSN [19,20,42]
but we hardly noticed any of them covering energy models
included in the present analysis. Therefore a direct compar-
ison of analysis outcomes obtained in the present study with
other studies is not possible. Though, the main findings of
some of the study, based on the energy optimization of WSN
usingGAand othermethods in a different way are as follows:
in [19], an optimized GAmethod is used to obtain an optimal
set of parameters of routingwith the objective to improve sev-
eral functioning stages of WSN; in [20], nested GA method
based clustering method is implemented in lifetime opti-
mization of WSN by searching competent topology. Better
performance of the GA is noticed compared with the other
GA and low energy adaptive clustering hierarchy (LEACH)
methods; in another similar study [42], GA based clustering
method is implemented in energy consumption optimization
by creating clusters at the base station and performed better
than LEACH.

The complexity of inter-cluster head communication is a
significant issue of WSN. A summary of some significant
studies covering inter-cluster head communication in WSN
is as follows: prolong stable election protocol (P-SEP) is
proposed for energy consumption in WSN, which assists in
the cluster head selection, sensor node distribution, etc. [43];
a novel method using on cryptographic keys based cluster
head to support inter-cluster head communication inWSN is
designed [44]; Ahmadi et al. [45] have implemented an effec-
tive routing algorithm in WSN for stabilizing k-coverage;
and a novel algorithm for minimum energy consumption in
internet of thing (IoT) based onWSN is presented [46]. Inter-
cluster head communication is not covered in the present
study since energy modeling of WSN is not included in the
scope of present analysis; rather established energy models
ofWSN have been used. Consequently, a direct evaluation of
analysis outcomes with the LEACH and other related meth-
ods is not feasible. Future studies will target the inter-cluster
head communication issue to develop optimization methods
and their performance assessment with the other methods
like LEACH, P-Sep, N-SEP, etc.

5 Conclusion

The problem of limited battery life in WSNs has been out-
lined and this challenge is explained by using the GAmethod

and data communication energy models. Twenty varieties of
GA methods have been applied on three recognized energy
models of WSNs in order to find the minimum energy
value during data communication. Uniform mutation func-
tion (mutation rate about 0.04), stochastic uniform based
selection process and two point crossover in between 51 and
200 iterations results in a minimum value of energy con-
sumption and the ideal set of parameters of selected energy
models. The energy values obtained after the optimization
signifies that the application of GA could extend the bat-
tery life of sensor nodes by using the ideal set of parameters
during the data communication.
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