Article

Y4
4

&

i ‘_.5-4;;)
TRANSACTIONS OF THE
INSTITUTE OF
MEASUREMENT & CONTROL

Biogeography-based optimization in

noisy environments

Transactions of the Institute of
Measurement and Control

2015, Vol. 37(2) 190204

© The Author(s) 2014

Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0142331214537015
tim.sagepub.com

®SAGE

Haiping Ma'-%, Minrui Fei?, Dan Simon® and Zixiang Chen'

Abstract

Biogeography-based optimization (BBO) is a new evolutionary optimization algorithm that is based on the science of biogeography. In this paper, BBO
is applied to the optimization of problems in which the fitness function is corrupted by random noise. Noise interferes with the BBO immigration rate
and emigration rate, and adversely affects optimization performance. We analyse the effect of noise on BBO using a Markov model. We also incorpo-
rate re-sampling in BBO, which samples the fitness of each candidate solution several times and calculates the average to alleviate the effects of noise.
BBO performance on noisy benchmark functions is compared with particle swarm optimization (PSO), differential evolution (DE), self-adaptive DE
(SaDE) and PSO with constriction (CPSO). The results show that SaDE performs best and BBO performs second best. In addition, BBO with re-
sampling is compared with Kalman filter-based BBO (KBBO). The results show that BBO with re-sampling achieves almost the same performance as

KBBO but consumes less computational time.
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Introduction

Many optimization problems in science and engineering
include fitness function noise, which poses a challenge for
optimization algorithms (Beyer and Sendhoff, 2007; Hansen
et al., 2009; Kheng et al., 2012; Schwefel, 1993; Yu et al.,
2008). Noise corrupts the calculation of objective functions
via imperfect sensors, measurement devices and approximate
numerical simulations. Noise results in two types of undesir-
able effects in optimization algorithms: 1) a superior candi-
date solution may erroneously be indicated as inferior, and 2)
an inferior candidate solution may erroneously be indicated
as superior. These effects result in false optima and reduced
optimization performance, including reduced convergence
rates and non-monotonic fitness improvement. Evolutionary
algorithms (EAs; Chen et al., 2010a) have been modified and
applied in several ways to noisy problems (Pietro, 2004).
Attractive optimization algorithms for noisy problems include
genetic algorithms (GAs; Miihlenbein and Schlierkamp-
Voosen, 1993; Stroud, 2001; Yao et al., 1999), estimation of
distribution algorithms (EDA; Chen et al., 2010b; Dong
et al., 2013), differential evolution (DE; Jin and Branke, 2005;
Krink et al., 2004; Liu et al., 2008; Mininno and Neri, 2010),
and particle swarm optimization (PSO; Mendel et al., 2011;
Pan et al., 2000).

Biogeography-based optimization (BBO; Simon, 2008) is a
relatively new EA for global optimization. It is modelled after
the immigration and emigration of species between habitats.
One distinctive feature of BBO is that in each generation,
BBO uses the fitness of each solution to determine its immi-
gration and emigration rate. The emigration rate is propor-
tional to fitness and the immigration rate is inversely

proportional to fitness. BBO has demonstrated good perfor-
mance on benchmark functions (Du et al., 2009; Ergezer
et al., 2009; Ma, 2010; Ma and Simon, 2011). It has also been
applied to many real-world optimization problems, including
sensor selection (Simon, 2008), economic load dispatch
(Bhattacharya and Chattopadhyay, 2010), satellite image
classification (Panchal et al., 2009), power system optimiza-
tion (Rarick et al., 2009) and others, but until now, BBO has
primarily been applied to deterministic and noiseless optimi-
zation problems. The only published report of the use of
BBO on noisy problems has been a master’s thesis (Du,
2009), which used Kalman filtering (Simon, 2006) to compen-
sate for the effects of noise and to provide a fitness estimate
of each candidate solution. The Kalman filter includes the
calculation of fitness estimation uncertainty, which increases
computational time. Therefore, for many practical optimiza-
tion problems, this Kalman filter-based BBO might not be
viable.
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Previous noise compensation methods in EAs can be clas-
sified into two categories (Jin and Branke, 2005): methods
that require an increase in computational cost (including
explicit averaging methods and implicit averaging methods)
and methods that perform hypotheses testing on the noise
(including the use of approximate fitness models and the
modification of selection schemes). Explicit averaging meth-
ods include re-sampling (Krink et al., 2004; Pietro et al.,
2004), which is the most common approach to dealing with
noise. Re-sampling of the fitness values involves several noisy
fitness value measurements, followed by averaging to obtain
an improved fitness estimate. Averaging an increased number
of samples reduces the variance of the estimated fitness. As
the number of samples increases to infinity, the uncertainty in
the fitness estimate decreases to zero, which transforms the
noisy problem into a noiseless one.

Variants of re-sampling include dynamic re-sampling,
standard error dynamic re-sampling and m-level re-sampling
(Pietro et al., 2004). Re-sampling has limitations because it
leads to an increase in the number of fitness evaluations,
which means that computational time increases, but com-
pared with the more complex calculations of the Kalman
filter, re-sampling is simpler and faster, as we show in this
paper.

Implicit averaging methods increase the population size so
that candidate solutions can be re-evaluated during the nor-
mal course of evolution, and so that neighbouring solutions
can be evaluated, which gives fitness estimates in neighbour-
ing regions of the search space. It has been shown in
Fitzpatrick and Grefenstette (1988) that a large population
size reduces the influence of noise on the optimization pro-
cess. The main idea of approximated model methods is that
measured fitness values of neighbouring individuals can give
good fitness estimates without extra evaluations (Neri et al.,
2008).

The aim of this paper is to study the performance of BBO
on the optimization of noisy problems, and to study the effect
of noise on BBO immigration and emigration rates. We use a
Markov model to analyse the effect of noise on BBO, and
then we incorporate re-sampling in BBO to alleviate the
effects of noise. The methods in this paper could also be
extended to other EAs in future work.

The original contributions of this paper include the follow-
ing: 1) We use a Markov model to mathematically analyse
the effect of fitness function evaluation noise on BBO perfor-
mance. We find that higher mutation rates tend to reduce the
effect of noise on BBO performance, although higher muta-
tion rates might themselves reduce BBO performance. 2) EA
performance on noisy fitness function benchmarks, in order
from best to worst, is self-adaptive DE (SaDE), BBO and
PSO with constriction (CPSO), DE and PSO. 3) BBO with
re-sampling performs as well as Kalman filter-based BBO on
noisy optimization problems, but with a lower computational
cost.

The remainder of this paper is organized as follows. The
next section reviews BBO and its Markov model, then we use
the Markov model to analyse the influence of noise on BBO.
We present performance comparisons between BBO, PSO,
DE, CPSO and SaDE on noisy benchmark functions, then
we provide comparisons between BBO with re-sampling and

Kalman filter-based BBO. Lastly, we present conclusions and
suggest directions for future work.

Natural biogeography and biogeography-
based optimization

This section presents an overview of natural biogeography, an
overview of standard BBO and an overview of a previously
derived Markov model for BBO.

Natural biogeography

Biogeography is nature’s way of distributing species, and it
has often been studied as a process that maintains equilibrium
in natural habitats. Species equilibrium in a biological habitat
occurs when the combined speciation and immigration rates
equals the extinction rate. One reason that biogeography has
been viewed from the equilibrium perspective is that this view-
point was the first to place biogeography on a firm mathemat-
ical footing (MacArthur and Wilson, 1963, 1967). However,
since then, the equilibrium perspective has been increasingly
questioned, or rather expanded, by biogeographers.

In engineering, we often view stability and optimality as
competing objectives; for example, a simple system is typically
easier to stabilize than a complex system, while an optimal
system is typically more complex and less stable than a sim-
pler system (Keel and Bhattacharyya, 1997). However, in bio-
geography, stability and optimality are two perspectives of the
same phenomenon. Optimality in biogeography involves bio-
logically diverse, complex communities that are highly adap-
table to their environment. Stability in biogeography involves
the persistence of existing populations. Field observations
show that complex communities are more adaptable and sta-
ble than simple communities (Harding, 2006: 82), and this
observation has been supported by simulation (Elton, 1958;
MacArthur, 1955). The equilibrium versus optimality debate
in biogeography thus becomes a matter of semantics; equili-
brium and optimality are simply two different views of the
same behaviour.

Some examples of biogeography as an optimization pro-
cess are the migration of species to Krakatoa, a volcanic
island in the Indian Ocean, which erupted in 1883 (Whittaker
and Bush, 1993); the Amazon rainforest, which is a typical
case of a mutually optimizing life/environment system
(Harding, 2006); Earth’s temperature (Harding, 2006);
Earth’s atmospheric composition (Lenton, 1998); and the
ocean’s mineral content (Lovelock, 1990). This is not to say
that biogeography is optimal for any particular species. Life
flourishes and evolves on Earth, but not necessarily in a
human-centric way.

Biogeography is a positive feedback phenomenon, similar
to natural selection. In natural selection, as species become
fitter, they are more likely to survive. As they thrive, they dis-
perse and become better able to adapt to their environment.
Natural selection, like biogeography, entails positive feed-
back. However, the time scale of biogeography is much
shorter than that of natural selection, which hints at the pos-
sibility of improved optimization performance by using bio-
geography rather than natural selection as a motivating
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paradigm for optimization (i.e. BBO rather than GAs). The
viewpoint of biogeography as an optimization process moti-
vated the development of BBO as an evolutionary optimiza-
tion algorithm (Simon, 2008), which we discuss next.

Biogeography-based optimization

BBO is a new optimization approach inspired by biogeogra-
phy. A biogeography habitat corresponds to a candidate solu-
tion of an optimization problem. Therefore, the number of
habitats in BBO corresponds to the BBO population size.
Each candidate solution is comprised of a set of features,
which are similar to genes in GAs, and which are also called
independent variables or decision variables. The number of
species in each habitat corresponds to the problem dimension.
We see that contrary to natural biogeography, all of the habi-
tats in BBO (i.e. the candidate solutions) have the same num-
ber of species (i.e. independent variables).

Like other EAs (Schwefel, 1993), BBO probabilistically
shares information between candidate solutions to improve
candidate solution fitness. In BBO, each candidate solution
immigrates features from other candidate solutions based on
its immigration rate, and emigrates features to other candi-
date solutions based on its emigration rate. In the original
BBO paper (Simon, 2008), immigration rates are first used to
decide probabilistically whether to immigrate solution fea-
tures to a given solution. Then, if immigration is selected,
emigration rates are used to choose the emigrating solution.
Migration can be expressed as

xls) < x5(s) (1)

where x; denotes the immigrating solution, x; denotes the emi-
grating solution and s denotes a solution feature index. In
BBO, each candidate solution x has an immigration rate A and
emigration rate u. A good solution has relatively high u and
low A, while the converse is true for a poor solution. According
to Simon (2008), these functions can be calculated as

A=1-1(x)

w=1() @

where f'denotes solution fitness and is normalized to the range
[0, 1]. After migration, we probabilistically decide whether to
mutate each feature of each candidate solution.

A description of one generation of BBO is given in
Algorithm 1. Migration and mutation of the entire popula-
tion takes place before any of the solutions are replaced in
the population, which requires the use of the temporary pop-
ulation z in the algorithm. In Algorithm 1, the statement ‘use
Ay to probabilistically decide whether to immigrate to z;’ can
be implemented with the following logic, where rand(0, 1) is a
random number uniformly distributed between 0 and 1:

If A, < rand(0,1) then
Immigration to z; does occur
else

Immigration does not occur
end if

In Algorithm 1, the statement ‘Use {u;} to probabilistically
select the emigrating solution y;” can be implemented with any
fitness-based selection method since w; is proportional to the
fitness of y,. For instance, we could use tournament selection
by randomly choosing two or more solutions for a tourna-
ment, and then selecting y; as the fittest solution in the tourna-
ment. In this paper, as in most other BBO implementations,
we use {u;} in a roulette-wheel algorithm so that the probabil-
ity that each individual y; is selected for emigration is propor-
tional to its emigration rate u; Standard BBO uses rank-
based selection, i.e. we rank the individuals according to fit-
ness values, giving the best individual a rank of N (where N is
the population size), and giving the worst individual a rank of
1. Rank-based selection then assigns A and p on the basis of
rankings rather than on the basis of absolute fitness values
(Simon, 2013).

A Markov model of BBO

This section reviews a Markov model of BBO. This model will
be used later to mathematically analyse the effect of fitness
function noise on BBO.

Algorithm 1: One generation of the BBO algorithm, where N is the population size. y is the entire population of candidate
solutions, yy. is the kth candidate solution, and y(s) is the sth feature of yy.

For each solution y,, define emigration rate u, proportional to fitness of y,, where u,€[0,1]

For each solution y;, define immigration rate A, =1 —puy
Zy
For each solution z; (k=1 to N)

For each solution feature s

Use A, to probabilistically decide whether to immigrate to z,

If immigrating then

Use {u;} to probabilistically select the emigrating solution y;

zZi(s) —yAs)
End if
Next solution feature
Probabilistically decide whether to mutate z;
Next solution
yez
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Consider a g¢-dimensional binary optimization problem
with search space {xi, ..., x,}. The search space is the set of
all bit strings x;, each consisting of ¢ bits. Therefore, the car-
dinality of the search space is n= 2. Suppose that BBO is cur-
rently in generation ¢. Denote the kth candidate solution in
the BBO population as y,, where k€[1, N], and where N is the
population size. Based on the previously derived transition
probability of BBO (Simon et al., 2011), the probability that
migration results in y, being equal to x; at generation ¢ + 1, is
given by

my = Pr(ye,+1 = x)

=TI [0 =2016(x(s) — xils))) + </\k
s=1

Probability if immigration
does not occur

Zj@, (s) le““j)

Z}l: 1 Vil

Probability if immigration
does occur
(3)

where 1 is the indicator function on the set 0 (i.e. 1o(a)=1 if
a=0, and 1¢(a) =0 if a#0), s denotes the index of the candi-
date solution feature (i.e. the bit number), A, denotes the
immigration rate of candidate solution y,, u; denotes the emi-
gration rate of the candidate solution x; and v; denotes the
number of x; individuals in the population. The notation s(s)
denotes the set of search space indices j such that the sth bit
of x; is equal to the sth bit of x;, i.e. 5i(s) = {j: x;(s) = x(s5)}. my;
is the probability that the kth individual in the population is
equal to the ith individual in the search space when only
migration is considered (no mutation). Note that the first
term in the product on the right side of (3) denotes the prob-
ability that y, + 1(s) =x,(s) if immigration of the sth candi-
date solution feature did not occur, and the second term
denotes the probability if immigration of the sth candidate
solution feature did occur. For a detailed derivation, see
Simon et al. (2011).

Mutation operates independently on each candidate solu-
tion by probabilistically reversing each bit in each candidate
solution. Suppose that the event that each bit of a candidate
solution is flipped is stochastically independent and occurs with
probability p,,€(0, 1). Then the probability that a candidate
solution that is equal to x; mutates to x; can be written as

wy = Pr(x —x;) = ppi(1 = pu)*™"" (4)

where ¢ is the number of bits in each candidate solution, and
Hj; represents the Hamming distance between bit strings x;
and x;.

The Markov model presented above will be used in the fol-
lowing section to analyse mathematically the effect of noise
on BBO.

The influence of noise on BBO

Up to this point, BBO applications in the literature have typi-
cally been implemented on deterministic problems. That

means that the fitness calculation of each solution is
noise-free, but in the real world, noiseless environments
do not exist. In a noisy environment, the calculated fitness
is not equal to the true fitness, the immigration and emigra-
tion rates in BBO will be calculated incorrectly, and BBO
migration may not accomplish its intended purpose. Fitness
noise can be represented in a very general form (Jin and
Branke, 2005), but in this paper we assume the most simple
and most common type of noise, which is additive and
Gaussian.

Consider two solutions, x; and x,. Their true fitness values
are denoted by f; and f5, respectively, and the fitness function
evaluation noise is denoted by w; and w,, respectively.
Assume that the true fitness of x; is better than that of x», i.e.

Nh=>h (5)

However, the measured fitness of x; may be less than that of
X, because of noise, i.e.

fTw<fhitw (6)

If noise has a strong effect on measured fitness, the rank of
the measured fitness values could be much different from the
rank of the true fitness values. Du (2009) computes the prob-
ability of fitness ranks changing due to noise.

In this paper, we assume w; and w, are additive noises,
because additive noise is the predominant noise model due to
its frequent occurrence in various measurement systems.
Additive noise is often assumed to be Gaussian due to its wide
prevalence in both natural and engineering systems. Non-
Gaussian noise, such as Cauchy noise, has also been consid-
ered (Arnold and Beyer, 2003). It is plausible to assume that
the noise cannot exceed certain limits due to the characteris-
tics of the fitness measurement instrument. These assumptions
have theoretical and practical impacts on noisy EAs, but are
not considered further in this paper.

Example

Now we give an example of the effect of noise on BBO per-
formance using the Markov transition probabilities of the
previous section. Suppose we have a two-bit problem (¢=2,
n=4) with a population size N=3. The search space
consists of bit strings x = {x;, x2, x3, x4} = {00, 01, 10, 11}
with corresponding fitness values f = {fi, f2, f3, fa} =
{0.2, 0.4, 0.6, 0.8}. Suppose that the three individuals in the
current population are y = {x;, xp, x3} = {00, 01, 10}. In
the noise-free case, the fitness value of x; is fi = 0.2, and its
corresponding immigration rate and emigration rate are
A = 0.8 and w; = 0.2, as indicated by (2). The fitness value
of x, is f, = 0.4, with corresponding immigration rate and
emigration rate A, = 0.6 and u, = 0.4. We perform probabil-
istic migration to see if x; and x, can transition to the optimal
solution x4 = 11. Based on (3), the probability of x; transi-
tioning to the optimal solution due to migration only (no
mutation) is
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Pr(x; — x4)
- H {((1 Ao (s) — xa(s))) + (Am>
2= 1 Vit
Zj6{3, 4} Vj:‘&/}
Vi
Zje{z, 43 ViMy

|: 1—)\1 10 x1 )—X4(1)) + Ay

|: 1—/\1 10 x1 )—X4(2)) +)\1
=0.1

The probability of x, transitioning to the optimal solution
due to migration only is

Pl‘(x; — X4)
2 ) Vilb:
= SUI |:((1 — M) 1o(x2(s) — x4(s))) + </\2 %;le)vjﬁ:/>

B {“ —A2)lo(xa(1) = x4(1)) + AM]

j=1 Vil
22, 4y Vit
4
2= 1 Vit

Next suppose that noise corrupts the measured fitness of x;
and x,. Suppose that the measured fitness of x; is f'; = 0.3
and the measured fitness of x, is /', = 0.2, so that /' > f"5.
In this case, the immigration rate and the emigration rate of
xpare A’y = 0.7 and u'; = 0.3 respectively, and the immigra-
tion rate and the emigration rate of x, are A’ = 0.8 and
n'y = 0.2 respectively. We perform a migration trial to see if
x; and x, can transition to the optimal solution x4 = 11.
Based on (3), the probability of x; transitioning to the opti-
mal solution due to migration only is

Pr (x; — x4)
noise

2 . Vilk;
- II {((1 A To(x1(s) — xa(s))) + </\1W>

Zj: 1 Vil

= 0.049

The probability of x, transitioning to the optimal solution
due to migration only is

Pr (x; — x4)
noise

— ]i[ |:((1 —A2)1o(x2(s) — xa(s))) + </\2M> = 0.151

4
251 Vil

We see that the probabilities that the two individuals
x; and x, transition to the optimal solution change signifi-
cantly. We further find that these two probabilities both
decrease, with the probability of x; decreasing from 0.107 to
0.049, and the probability of x, decreasing from 0.180 to
0.151.

Now suppose that the mutation rate probability p,, is 0.1
per bit. We can combine (3) and (4) to find the following tran-
sition probabilities in the noise-free case:

Pr,(x; — x4) = 0.132
Pr,(x; — x4) = 0.197

Pl noise(¥1 — x4) = 0.082
Py noise(¥2 — x4) = 0.169

We see that even with mutation, the probability of transition-
ing to the optimal solution x4 decreases when noise corrupts
the fitness evaluations. However, mutation tends to even out
the probabilities. Without mutation, we saw that the prob-
ability of x| transitioning to the optimal solution decreases
from 0.107 to 0.049, a decrease of 54%, and the probability
of x, transitioning to the optimal solution decreases from
0.180 to 0.151, a decrease of 16%. However, with a mutation
rate of 0.1, we saw that the probability of x| transitioning to
the optimal solution decreases from 0.132 to 0.082, a decrease
of 38%:; and the probability of x; transitioning to the optimal
solution decreases from 0.197 to 0.169, a decrease of 14%.
Noise damages the migration mechanism of BBO, but some
of that damage can be mitigated with a high mutation rate.

Simulation results

In this section, we apply re-sampling to BBO to improve BBO
performance in noisy environments. We also compare BBO
with other EAs that use re-sampling, including PSO, DE,
CPSO and SaDE. Then we compare the performance of BBO
with re-sampling and BBO augmented with Kalman filtering
(KBBO).

BBO with re-sampling

In noisy problems, measured fitness values include noise.
Therefore, as we showed in the previous section, the mea-
sured values are not perfectly accurate, and they do not per-
fectly reflect the true value of the fitness. BBO uses the fitness
of each solution to determine its immigration and emigration
rate. Because of noise, measured fitness is not true fitness, the
immigration and emigration rates in BBO are incorrect, and
this negatively affects BBO migration. Re-sampling is used to
sample the fitness of each candidate solution several times
and calculate the average as the estimated fitness.

Suppose that the ith sample g,(x) of the fitness function of
a candidate solution x is given by

gi(x) = f(x) + w; (7)

where f{(x) is the true fitness, and w; is the additive noise at the
ith measurement. If we re-sample the measured fitness func-
tion / times, the best estimate of the true fitness is

/
)= 33 e (5)

Re-sampling is a straightforward and effective way to handle
noise in fitness functions, and one of the most important con-
tributions of re-sampling is that it does not need any control
parameters except for the number of re-samples. The flow-
chart of BBO with re-sampling is shown in Figure 1. It is
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Initialize population and
evaluate fitness

Maximum number of
Function evaluations reached?

Sample the fitness of each
candidate solution several
times and calculate the
average

Perform migration and
mutation to obtain new
solutions

v

Re-evaluate fitness of
new solutions

]

End

Figure |I. Flowchart of biogeography-based optimization with

worth pointing out that in Figure 1, we can use PSO, DE or
any other EA instead of BBO to alleviate the effects of noise.

Test set-up

In this paper, we use a fixed number of total fitness evalua-
tions for each benchmark and each algorithm to provide fair
performance comparisons. We run experiments with /=1, 5,
20 and 50, where [ is the total number of fitness evaluations
per candidate solution per generation. We also compare per-
formance results on noise-free problems.

A representative set of noiseless and noisy benchmark
functions have been used for performance testing. For the
noiseless functions, we have selected the 25 test problems,
each with 30 dimensions, which appeared in the CEC 2005
special session on real parameter optimization (Suganthan
et al., 2005). These noiseless functions are summarized in
Table 1, and include five unimodal functions and 20 multimo-
dal functions. The functions also include 12 basic functions,
two expanded functions and 11 hybrid functions. Many other
benchmarks have been published in the literature, but we use
these benchmarks because many studies of EA performance
on these benchmarks are available in the literature.

All functions are shifted in order to ensure that their
optima are not at the centre of the search space. The noisy
benchmark functions are defined as

fN{)i&y()?) :f()_C‘) + |N(O’ 1)‘ (9)

where [N (0, 1)| is the absolute value of a Gaussian random
variable with mean 0 and variance 1. Note that all benchmark

re-sampling. functions are minimization problems.

Table I. Benchmark functions.

Function Name Domain Minimum
Fl Shifted Sphere Function —100=x;<100 —450
F2 Shifted Schwefel Problem [.2 —100=x;<100 —450
F3 Shifted Rotated High Conditioned Elliptic Function —100=x;<100 —450
F4 Shifted Schwefel Problem 1.2 with Noise in Fitness —100=x;<100 —450
F5 Schwefel Problem 2.6 with Global Optimum on Bounds —100=x;<100 =310
Fé6 Shifted Rosenbrock Function —100=x;<100 390
F7 Shifted Rotated Griewank Function without Bounds 0=<x<600 —180
F8 Shifted Rotated Ackley’s Function with Global Optimum on Bounds —32=x;<32 — 140
Fo Shifted Rastrigin Function —5=x,<5 —330
F10 Shifted Rotated Rastrigin Function —5=x<5 —330
FIl Shifted Rotated Weierstrass Function —0.5=x=<0.5 90
Fl2 Schwefel Problem 2.13 —100=x;<100 —460
FI3 Expanded Extended Griewank plus Rosenbrock Function (F8F2) —3=x=<I —130
Fl4 Shifted Rotated Expanded Schaffer F6 —100=x;<100 —300
FI5 Hybrid Composition Function —5=x<5 120
Flé Rotated Hybrid Composition Function —5=x;<5 120
F17 Rotated Hybrid Composition Function with Noise in Fitness —5=x;<5 120
FI8 Rotated Hybrid Composition Function —5=<x;<5 10
F19 Rotated Hybrid Composition Function with a Narrow Basin for the Global Optimum —5=x<5 10
F20 Rotated Hybrid Composition Function with the Global Optimum on the Bounds —5=x;<5 10
F21 Rotated Hybrid Composition Function —5=x=<5 360
F22 Rotated Hybrid Composition Function with high Condition Number matrix —5=x;<5 360
F23 Non-Continuous Rotated Hybrid Composition Function —5=x=5 360
F24 Rotated Hybrid Composition Function —5=x=<5 260
F25 Rotated Hybrid Composition Function without Bounds —5=x<5 260

More details about these functions can be found in Suganthan et al. (2005).
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Comparisons with other EAs

To illustrate the performance BBO on noisy optimization prob-
lems, we compare with four other EAs: a basic DE algorithm,
a basic PSO algorithm, SaDE and CPSO. All algorithms are
combined with re-sampling. Note that the four algorithms that
we choose form a representative set rather than a complete set.
We compare with DE because it is an effective EA and has
demonstrated excellent performance (Das and Suganthan,
2011). We compare with SaDE because it is one of the best
DE variants (Zhao et al., 2011), and it uses a self-adaptive
mechanism on control parameters F (scaling factor) and CR
(crossover rate); each candidate solution in the population is
extended with control parameters F and CR that are adjusted
during evolution. We compare with the current standard PSO
algorithm obtained from Particle Swarm Central (http://
www.particleswarm.info/) because it usually offers good perfor-
mance and is a relatively new EA (Bratton and Kennedy,
2007). We compare with CPSO because it has a structure that
is more complex than standard PSO, and demonstrates good
performance (Clerc and Kennedy, 2002; Eberhart and Shi,
2000).

For BBO, the following parameters have to be tuned: pop-
ulation size, maximum migration rate and mutation rate. In
Ma (2010), these parameters have been discussed in detailed.
Here we use a reasonable set of tuning parameters, but do not
make any effort at finding the best settings. The parameters
that we use are: maximum immigration and emigration rate
of 1, and mutation probability of 0.01 per generation per solu-
tion feature, with uniform mutation centred at the middle of
the search domain. In addition, we use linear migration curves
as described in (2).

For DE, we use the parameters recommended by Clerc
(2006), Eberhart and Shi (2004), Eberhart et al. (2001), and
Onwubolu and Babu (2004): F=0.5 and CR=0.5.

For PSO, we use the parameters recommended by
Onwubolu and Babu (2004), Price and Storn (1997), and
Storn (1999): inertia weight of 0.3, cognitive constant of 1,
social constant for swarm interaction of 1.0, and social con-
stant for neighbourhood interaction of 1.0.

For SaDE, the parameter settings are adapted according
to the learning progress (Zhao et al., 2011): F is randomly
sampled from the normal distribution N(0.5, 0.3), and CR
follows the normal distribution N(0.5, 0.1).

For CPSO, we use a constriction coefficient
K:2/‘2—(p—\/(p2—4 ’, here ¢ =4.1 (Clerc and

Kennedy, 2002). The other parameters of CPSO are the same
as those of PSO.

Each algorithm has a population size of 50, and a fixed
number of total fitness evaluations (NumEval) of 100,000.
The noise-handling method in each algorithm uses re-sam-
pling. Each function is optimized over 25 independent runs.
We use the same set of initial random populations to evaluate
each algorithm.

The benchmark function results are shown in Tables 2—4.
We observe that for noiseless benchmark functions, SaDE
performs the best on 14 functions, BBO performs the best on
six functions, CPSO performs the best on five functions, DE
performs the best on one function and PSO does not perform
best on any of the functions.

The number of fitness re-samples strongly affects optimi-
zation performance. When the number of fitness re-samples is
one, SaDE performs the best on 14 functions, CPSO per-
forms the best on four functions, DE performs the best on
four functions, PSO performs the best on three functions and
BBO performs the best on two functions. When the number
of fitness re-samples is five, 20 or 50, SaDE performs the best
on 14 functions, BBO performs the best on six functions,
CPSO performs the best on five functions, DE performs the
best on one function and PSO does not perform best on any
of the functions. Note that these results are the almost same
as those obtained for the noiseless benchmark functions. If
we tested other state-of-the-art DE and PSO algorithms, we
could probably obtain better optimization results (Das et al.,
2005; Mendel et al., 2011; Pietro et al., 2004). However, the
same could be said for recently proposed improvements of
BBO (Du et al., 2009; Ergezer et al., 2009).

We find that for many of the noisy benchmark functions,
the performance of BBO does not dramatically improve as
the number of re-samples increases. For example, for F3,
BBO performs almost the same when the number of fitness
re-samples is 20 or 50, but worse than when the number of fit-
ness re-samples is five. There is a point of diminishing returns
with the number of re-samples. If the number of re-samples is
too large, then we end up wasting fitness function evaluations
on increased estimation accuracy, because we already have
sufficient estimation accuracy with fewer re-samples.

We see that re-sampling alleviates the effect of noise for the
benchmark functions that we studied, but it is hard to quantify
how many times we have to sample a noisy function to achieve
a desired fitness value. Many re-samples might not be feasible
for expensive fitness functions, and might not be necessary for
all problems. However, our results show that re-sampling is a
simple and effective approach to deal with noise.

Table 5 shows the results of Wilcoxon test comparisons
between BBO and each of the other four EAs. The Wilcoxon
test is a non-parametric statistical method to determine whether
differences between groups of data are statistically significant
when the assumptions that the differences are independent and
identically normally distributed are not satisfied (Al-Rifaie and
Blackwell, 2012; Demsar, 2006; Derrac et al., 2011). Pairs are
marked in Table 5 if the difference between the pair of algo-
rithms has a level of significance « = 0.05 or less. We have a
total 125 groups of data for the noiseless and noisy benchmark
functions. We see the following from Table 5:

e There are 63 statistically significant differences
between DE and BBO, including:
o 37 groups of data for which BBO is better;
o 26 groups of data for which DE is better.

e There are 90 statistically significant differences
between SaDE and BBO, including:
o 31 groups of data for which BBO is better;
o 59 groups of data for which SaDE is better.

e There are 75 statistically significant differences
between PSO and BBO, including:
o 61 groups of data for which BBO is better;
o 14 groups of data for which PSO is better.
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Table 5. Wilcoxon test results.

BBO vs. BBO vs. BBO vs. BBO vs. Function BBO vs. BBO vs. BBO vs. BBO vs.

Function DE SaDE PSO CPSO DE SaDE PSO CPSO
Fl X-o X-o X-o X-o Fl4 - o-X - o-X
FI* I=1 o-X o-X X-o o-X Fl14*, =1 - - - —
F1*, I=5 X-o X-o X-o X-o Fl14%* =5 — - - -
F1* 1=20 X-o X-o X-o X-o F14%* =20 - - - -
F1*, =50 X-o X-o X-o X-o F14%*, =50 - - - -
F2 o-X o-X X-o X-o FI5 X-o X-o X-o -
F2* I=1 o-X o-X X-o - FI5% I=1 - - - o-X
F2*, I=5 - o-X X-o - F15%, I=5 X-o X-o X-o —
F2*, 1=20 - o-X X-o - F15%, =20 X-o X-o X-o -
F2* I=50 - o-X X-o - F15% =50 X-o X-o X-o -
F3 o-X o-X X-o o-X Flé o-X o-X - -
F3*, I=1 o-X o-X - o-X Fl6*, I=1 o-X o-X - -
F3*, I=5 - o-X - - Fl6* I=5 o-X o-X - -
F3*, =20 — o-X — o-X Flé6*, |=20 o-X o-X — -
F3*, I=50 - o-X - o-X Fl6*, I=50 o-X o-X - -
F4 - - X-o - F17 o-X o-X - o-X
F4* =1 o-X o-X - o-X FI17%, I=1 o-X o-X - o-X
F4*, |=5 - o-X - o-X F17%, I=5 o-X o-X - -
F4*, =20 - - - o-X F17% 1=20 o-X o-X - -
F4*, |=50 - — - o-X F17%, =50 o-X o-X - —
F5 o-X o-X X-o X-o FI8 — o-X o-X o-X
F5% I=1 o-X o-X - o-X F18% I=1 - - o-X -
F5%, I=5 - o-X X-o - F18%*, I=5 - o-X o-X -
F5%, 1=20 - o-X X-o - F18%*, I=20 - o-X o-X -
F5*, I=50 - o-X - o-X F18%*, =50 - o-X o-X -
Fé6 X-o X-o X-o X-o FI9 X-o X-o X-o X-o
Fé6*, I=1 o-X o-X - o-X F19%, I=1 - - - -
Fé6*, I=5 - X-o X-o X-o F19% I=5 - - - -
Fé6*, 1=20 - X-o X-o X-o F19%, I=20 X-o X-o X-o X-o
Fé*, I=50 X-o X-o X-o X-o F19%*, I=50 X-o X-o X-o X-o
F7 X-o X-o - X-o F20 X-o - X-o -
F7*, I=1 — o-X o-X o-X F20%*, I=1 — o-X X-0 -
F7*, I=5 - o-X o-X o-X F20%*, I=5 - o-X X-o -
F7*,1=20 - o-X o-X o-X F20%*, I=20 - o-X X-o -
F7*, I=50 - o-X o-X o-X F20%*, I=50 - o-X X-o -
F8 X-o - X-o o-X F21 - - - -
F8*, I=1 - X-o X-o X-o F21%, I=1 - - - -
F8*, I=5 - X-o X-o X-o F21%*, I=5 - - - o-X
F8%, 1=20 X-o X-o X-o X-o F21%, =20 — - - o-X
F8%, I=50 X-o X-o X-o X-o F21%*, =50 - - - o-X
F9 X-o o-X X-o X-o F22 X-o - X-o X-o
F9*, I=1 - o-X - o-X F22%*, I=1 - o-X - -
F9*, I=5 - o-X X-o o-X F22%*, I=5 - - - -
F9*, I=20 - o-X - o-X F22*, =20 - - - —
F9*, I=50 - o-X - o-X F22*, I=50 - - - -
F10 - - - X-o F23 X-o X-o X-o X-o
F10*, I=1 - — - - F23*, I=1 - - X-o -
F10%*, I=5 - - - - F23*, I=5 - X-o - X-o
F10%*, I=20 - - - - F23%*, =20 X-o X-o X-o X-o
F10*, I=50 - — - - F23*, =50 X-o X-o X-o X-o
FIl X-o - X-o X-o F24 o-X o-X o-X o-X
FLI*, =1 o-X o-X - - F24%*, I=1 o-X o-X o-X o-X
FII*, =5 - X-o X-o X-o F24*, I=5 o-X o-X o-X o-X
FI1%*, =20 X-o X-o X-o X-o F24%*, =20 o-X o-X o-X o-X
FI1%*, =50 X-o X-o X-o X-o F24%*, |=50 o-X o-X o-X o-X
Fl12 X-o — X-o X-o F25 - o-X - -
F12%*, I=1 o-X - X-o o-X F25%, I=1 - - X-o -
F12%*, I=5 - X-o X-o - F25%, I=5 X-o - X-o -
F12%*, =20 X-o X-o X-o X-o F25%*, I=20 X-o - X-o -

(continued)
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Table 5. Continued

BBO vs. BBO vs. BBO vs. BBO vs. Function BBO vs. BBO vs. BBO vs. BBO vs.
Function DE SaDE PSO CPSO DE SaDE PSO CPSO
F12%*, =50 X-o X-o X-o X-o F25%*, I=50 X-o - X-o -
FI3 X-o o-X X-o X-o Total 37, 26 31,59 61,14 35,35
FI3*, I=1 X-o X-o X-o X-o
F13%* I=5 X-o o-X X-o X-o
F13%* =20 X-o o-X X-o -
F13*, =50 X-o o-X X-o -

Abbreviations as in Table 2. “X-0’ shows that the left algorithm is significantly better than the right one, and ‘0-X’ shows that the right algorithm is
significantly better than the left one. The ‘Total’ row at the end of the table shows the number of times BBO outperforms DE, SaDE, PSO, CPSO,

and vice versa.

e There are 70 statistically significant differences
between CPSO and BBO, including:
o 35 groups of data for which BBO is better;
o 35 groups of data for which CPSO is better.

The statistical results show that for the noiseless and noisy
benchmark functions, SaDE performs best, BBO and CPSO
perform second best, DE performs fourth best, and PSO per-
forms worst. The superior performance of SaDE is apparently
due to its self-adaptive nature. This implies that a similar self-
adaptation strategy could also significantly improve perfor-
mance in PSO and BBO.

Comparisons with Kalman filter-based BBO (KBBO)

To illustrate the performance of BBO further combined
with re-sampling, we compare it with Kalman filter-based
BBO (Du, 2009), which is called KBBO. We use /=5 fitness
re-samples for BBO with re-sampling because it offers good
performance and uses a relatively small number of fitness
samples. The parameters used in these two BBO algorithms
are the same as those described in the previous section. The
number of total fitness evaluations is 100,000 and all func-
tions are optimized over 25 independent runs. We use the
same set of initial random populations to evaluate these two
BBO algorithms. The results of solving the 25 noisy bench-
mark functions are given in Table 6.

Table 6 shows that for noisy benchmark functions, BBO
combined with re-sampling performs the best on 12 functions,
and KBBO performs the best on the other 13 functions. This
result shows that BBO with re-sampling achieves almost the
same performance as KBBO for noisy optimization problems.
The average computational times of these two BBO algo-
rithms are shown in the last row of Table 6. We see that the
average computational time of BBO with re-sampling is much
lower than that of KBBO.

Table 7 shows the results of Wilcoxon tests between BBO
with re-sampling, and KBBO. Out of 25 groups of data, we
find that there are 19 statistically significant differences
between the two algorithms, including nine groups of data for
which BBO is better and 10 groups of data for which KBBO
is better.

Table 6. Comparisons of simulation results for biogeography-based
optimization (BBO) with the number of fitness re-samples I=5, and BBO
using the Kalman filter (KBBO).

Function KBBO Re-sampled BBO with I=5
Fl 5.27E—02£1.15E—-03 7.48E—07+2.26E—08
F2 9.54E—05*+5.56E—06 9.34E—02*7.25E—-03

F3 3.27E—03+4.36E—04 7.52E+01+3.39E+00
F4 9.00E—01*1.25E—-02 4.58E+00+7.86E—0I
F5 7.58E+02+3.24E+ 0l 1.23E+01+4.11E+00
Fé6 9.46E—06*3.15E—07 8.27E—06+1.25E—07
F7 4.26E—01*6.32E—02 5.36E—037.83E—04
F8 1.74E+02+3.28E+ 0l 1.02E+00+2.38E—01
F9 9.64E—04*1.19E—05 9.65E—01£7.14E—02
F10 5.63E—02+2.58E—03 8.03E+ 00+ 1.24E—0I
FIl 7.8|E—02+4.56E—03 9.07E—02+5.44E—-03
F12 3.38E+03+7.24E+02 7.58E+03+3.16E+02
FI3 8.63E—04+2.87E—05 7.78E—02+5.36E—03
Fl4 4.27E-01+6.35E—02 3.02E+00+5.11E—0l
FI5 9.36E+01£2.40E+00 9.25E+01+2.78E+ 00
Flé6 7.89E+025.59E+ 0l 2.14E+02+4.37E+0lI
F17 3.27E+02+1.24E+0] 6.47E+025.32E+ 0l
FI8 7.89E+02+4.28E+ 0l 8.21E+02+6.35E+01
FI19 9.00E+01=4.15E+00 8.34E+01+7.78E+00
F20 7.23E+02+5.31E+0lI 3.20E+02+8.60E+ 01
F21 7.80E+02+-4.51E+0I 7.64E+02+532E+01
F22 3.25E+01*=1.17E+00 7.78E+ 1 +4.28E+ 00
F23 7.65E+01+4.32E+00 9.61E+01+5.33E+00
F24 6.10E+03+9.22E+ 02 1.02E+03+7.20E + 02
F25 4.25E+02*4.10E+0I 6.34E+02+9.60E+01I
CPU time 6.22 4.53

Here [a*b] indicates the mean and corresponding standard deviations
of the error values. The last row shows the average computational time
in minutes. The best performance is in bold font in each row.

We make two general conclusions from these results. First,

both BBO combined with re-sampling, and KBBO, alleviate
the effects of noise for the benchmark functions that we stud-
ied, but a Kalman filter is an optimal estimator for the states
of a linear dynamic system, so KBBO may be a better method
if the model of the noise’s effect on the fitness values is well
known. However, the Kalman filter requires multiple tuning
parameters (Simon, 2006), and so KBBO may be difficult to
tune. A poorly tuned Kalman filter may give misleading



202

Transactions of the Institute of Measurement and Control 37(2)

Table 7. Wilcoxon test results of biogeography-based optimization (BBO) with re-sampling, and BBO using the Kalman filter (KBBO).

Function KBBO vs. BBO (I=5) Function KBBO vs. BBO (I=5) Function KBBO vs. BBO ( I=5)
Fl o-X FIO X-o0 FI8 -

F2 X-0 FII o-X FI9 X-o0

F3 X-0 FI2 o-X F20 -

F4 X-0 FI3 X-0 F21 X-o0

F5 o-X Fl4 X-0 F22 -

Fé6 - FI5 - F23 o-X

F7 o-X Flé - F24 o-X

F8 o-X FI7 o-X F25 X-o0

F9 X-o0 - - Total 10,9

If the difference between the algorithms is significant with a level of significance or less, the pairs are marked as follows: X-o shows that the left
algorithm is significantly better than the right one; and o-X shows that the right algorithm is significantly better than the left one. The ‘Total’ row at
the end of the table shows that KBBO outperforms BBO by a score of 10 to 9.

estimation results. Second, BBO combined with re-sampling is
faster than KBBO due to the computational complexity of the
Kalman filter.

Conclusion

We investigated the effect of fitness function noise on BBO
performance using a Markov model, and we used re-sampling
to alleviate the effect of random noise on the fitness function
evaluations of numerical benchmark functions. Analysis
showed the amount by which migration between candidate
solutions, which is the most critical operation of BBO, is cor-
rupted by fitness function evaluation noise. Analysis also
showed that the effect of noise is alleviated by high mutation
rates, although high mutation rates might themselves be detri-
mental to BBO performance. The analysis was confirmed
with an example using a BBO Markov model.

We used re-sampling in BBO and other EAs to deal with
random noise. We also compared BBO with re-sampling, and
BBO augmented with Kalman filtering. Our numerical simula-
tions showed the following: 1) BBO is a powerful EA for noise-
less benchmark functions, but fitness function evaluation noise
is indeed a problem for BBO; 2) SaDE performs best on noisy
optimization problems, BBO and CPSO perform second best,
DE performs third best, and PSO performs worst; 3) BBO with
re-sampling achieves the same optimization performance as
KBBO, but uses less computational time; 4) although re-
sampling is simple, it can greatly improve the performance of
BBO and other EAs in noisy environments. MATLAB® code
for the algorithms in this paper can be downloaded from
http://academic.csuohio.edu/simond/bbo/noisy.

This paper focused on the fitness of candidate solutions
contaminated by additive, normally distributed noise. For
future work, there are several important directions. First, in
many real-world applications, different types of fitness func-
tion noise can be encountered, so it is of interest to combine
BBO with re-sampling to address other types of fitness func-
tion noise. Furthermore, other types of noise problems
(besides fitness function noise) can arise in optimization. For
example, in distributed optimization, some nodes might tem-
porarily drop out of the algorithm due to communication

glitches; or during experimental optimization, some para-
meters might be corrupted during fitness function evaluation.
Future research could explore the effects of these and other
types of noise on EA performance.

The second important direction for future work is to
explore the optimization performance of BBO combined with
other noise-handling methods, e.g. dynamic re-sampling,
which uses different re-sampling rates at different points in
the search domain. The third important direction for future
work is to investigate the optimization ability of other BBO
variations on noisy problems. The fourth direction for future
work is to develop hybrid BBO algorithms for noisy problems
(i.e. BBO combined with other optimization algorithms).
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