
Article

Transactions of the Institute of

Measurement and Control

2015, Vol. 37(2) 190–204

� The Author(s) 2014

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0142331214537015

tim.sagepub.com

Biogeography-based optimization in
noisy environments

Haiping Ma1,2, Minrui Fei2, Dan Simon3 and Zixiang Chen1

Abstract
Biogeography-based optimization (BBO) is a new evolutionary optimization algorithm that is based on the science of biogeography. In this paper, BBO

is applied to the optimization of problems in which the fitness function is corrupted by random noise. Noise interferes with the BBO immigration rate

and emigration rate, and adversely affects optimization performance. We analyse the effect of noise on BBO using a Markov model. We also incorpo-

rate re-sampling in BBO, which samples the fitness of each candidate solution several times and calculates the average to alleviate the effects of noise.

BBO performance on noisy benchmark functions is compared with particle swarm optimization (PSO), differential evolution (DE), self-adaptive DE

(SaDE) and PSO with constriction (CPSO). The results show that SaDE performs best and BBO performs second best. In addition, BBO with re-

sampling is compared with Kalman filter-based BBO (KBBO). The results show that BBO with re-sampling achieves almost the same performance as

KBBO but consumes less computational time.

Keywords
Biogeography-based optimization, evolutionary algorithm, Kalman filter, noisy optimization, re-sampling.

Introduction

Many optimization problems in science and engineering

include fitness function noise, which poses a challenge for

optimization algorithms (Beyer and Sendhoff, 2007; Hansen

et al., 2009; Kheng et al., 2012; Schwefel, 1993; Yu et al.,

2008). Noise corrupts the calculation of objective functions

via imperfect sensors, measurement devices and approximate

numerical simulations. Noise results in two types of undesir-

able effects in optimization algorithms: 1) a superior candi-

date solution may erroneously be indicated as inferior, and 2)

an inferior candidate solution may erroneously be indicated

as superior. These effects result in false optima and reduced

optimization performance, including reduced convergence

rates and non-monotonic fitness improvement. Evolutionary

algorithms (EAs; Chen et al., 2010a) have been modified and

applied in several ways to noisy problems (Pietro, 2004).

Attractive optimization algorithms for noisy problems include

genetic algorithms (GAs; Mühlenbein and Schlierkamp-

Voosen, 1993; Stroud, 2001; Yao et al., 1999), estimation of

distribution algorithms (EDA; Chen et al., 2010b; Dong

et al., 2013), differential evolution (DE; Jin and Branke, 2005;

Krink et al., 2004; Liu et al., 2008; Mininno and Neri, 2010),

and particle swarm optimization (PSO; Mendel et al., 2011;

Pan et al., 2006).
Biogeography-based optimization (BBO; Simon, 2008) is a

relatively new EA for global optimization. It is modelled after

the immigration and emigration of species between habitats.

One distinctive feature of BBO is that in each generation,

BBO uses the fitness of each solution to determine its immi-

gration and emigration rate. The emigration rate is propor-

tional to fitness and the immigration rate is inversely

proportional to fitness. BBO has demonstrated good perfor-

mance on benchmark functions (Du et al., 2009; Ergezer

et al., 2009; Ma, 2010; Ma and Simon, 2011). It has also been

applied to many real-world optimization problems, including

sensor selection (Simon, 2008), economic load dispatch

(Bhattacharya and Chattopadhyay, 2010), satellite image

classification (Panchal et al., 2009), power system optimiza-

tion (Rarick et al., 2009) and others, but until now, BBO has

primarily been applied to deterministic and noiseless optimi-

zation problems. The only published report of the use of

BBO on noisy problems has been a master’s thesis (Du,

2009), which used Kalman filtering (Simon, 2006) to compen-

sate for the effects of noise and to provide a fitness estimate

of each candidate solution. The Kalman filter includes the

calculation of fitness estimation uncertainty, which increases

computational time. Therefore, for many practical optimiza-

tion problems, this Kalman filter-based BBO might not be

viable.

1Department of Electrical Engineering, Shaoxing University, Shaoxing,

Zhejiang, China
2Shanghai Key Laboratory of Power Station Automation Technology,

School of Mechatronic Engineering and Automation, Shanghai University,

Shanghai, China
3Department of Electrical and Computer Engineering, Cleveland State

University, Cleveland, Ohio, USA

Corresponding author:

Haiping Ma, Shanghai Key Laboratory of Power Station Automation

Technology, School of Mechatronic Engineering and Automation, Shanghai

University, Shanghai, China.

Email: Mahp@usx.edu.cn

Previous noise compensation methods in EAs can be clas-
sified into two categories (Jin and Branke, 2005): methods
that require an increase in computational cost (including
explicit averaging methods and implicit averaging methods)
and methods that perform hypotheses testing on the noise

(including the use of approximate fitness models and the
modification of selection schemes). Explicit averaging meth-
ods include re-sampling (Krink et al., 2004; Pietro et al.,
2004), which is the most common approach to dealing with
noise. Re-sampling of the fitness values involves several noisy
fitness value measurements, followed by averaging to obtain
an improved fitness estimate. Averaging an increased number
of samples reduces the variance of the estimated fitness. As
the number of samples increases to infinity, the uncertainty in
the fitness estimate decreases to zero, which transforms the
noisy problem into a noiseless one.

Variants of re-sampling include dynamic re-sampling,
standard error dynamic re-sampling and m-level re-sampling
(Pietro et al., 2004). Re-sampling has limitations because it
leads to an increase in the number of fitness evaluations,
which means that computational time increases, but com-
pared with the more complex calculations of the Kalman
filter, re-sampling is simpler and faster, as we show in this
paper.

Implicit averaging methods increase the population size so
that candidate solutions can be re-evaluated during the nor-
mal course of evolution, and so that neighbouring solutions
can be evaluated, which gives fitness estimates in neighbour-
ing regions of the search space. It has been shown in
Fitzpatrick and Grefenstette (1988) that a large population
size reduces the influence of noise on the optimization pro-
cess. The main idea of approximated model methods is that
measured fitness values of neighbouring individuals can give
good fitness estimates without extra evaluations (Neri et al.,
2008).

The aim of this paper is to study the performance of BBO
on the optimization of noisy problems, and to study the effect
of noise on BBO immigration and emigration rates. We use a

Markov model to analyse the effect of noise on BBO, and
then we incorporate re-sampling in BBO to alleviate the
effects of noise. The methods in this paper could also be
extended to other EAs in future work.

The original contributions of this paper include the follow-
ing: 1) We use a Markov model to mathematically analyse
the effect of fitness function evaluation noise on BBO perfor-
mance. We find that higher mutation rates tend to reduce the
effect of noise on BBO performance, although higher muta-
tion rates might themselves reduce BBO performance. 2) EA
performance on noisy fitness function benchmarks, in order
from best to worst, is self-adaptive DE (SaDE), BBO and
PSO with constriction (CPSO), DE and PSO. 3) BBO with
re-sampling performs as well as Kalman filter-based BBO on
noisy optimization problems, but with a lower computational
cost.

The remainder of this paper is organized as follows. The
next section reviews BBO and its Markov model, then we use
the Markov model to analyse the influence of noise on BBO.
We present performance comparisons between BBO, PSO,
DE, CPSO and SaDE on noisy benchmark functions, then
we provide comparisons between BBO with re-sampling and

Kalman filter-based BBO. Lastly, we present conclusions and

suggest directions for future work.

Natural biogeography and biogeography-
based optimization

This section presents an overview of natural biogeography, an
overview of standard BBO and an overview of a previously
derived Markov model for BBO.

Natural biogeography

Biogeography is nature’s way of distributing species, and it
has often been studied as a process that maintains equilibrium

in natural habitats. Species equilibrium in a biological habitat
occurs when the combined speciation and immigration rates
equals the extinction rate. One reason that biogeography has

been viewed from the equilibrium perspective is that this view-
point was the first to place biogeography on a firm mathemat-
ical footing (MacArthur and Wilson, 1963, 1967). However,

since then, the equilibrium perspective has been increasingly
questioned, or rather expanded, by biogeographers.

In engineering, we often view stability and optimality as

competing objectives; for example, a simple system is typically
easier to stabilize than a complex system, while an optimal
system is typically more complex and less stable than a sim-

pler system (Keel and Bhattacharyya, 1997). However, in bio-
geography, stability and optimality are two perspectives of the

same phenomenon. Optimality in biogeography involves bio-
logically diverse, complex communities that are highly adap-
table to their environment. Stability in biogeography involves

the persistence of existing populations. Field observations
show that complex communities are more adaptable and sta-
ble than simple communities (Harding, 2006: 82), and this

observation has been supported by simulation (Elton, 1958;
MacArthur, 1955). The equilibrium versus optimality debate

in biogeography thus becomes a matter of semantics; equili-
brium and optimality are simply two different views of the
same behaviour.

Some examples of biogeography as an optimization pro-

cess are the migration of species to Krakatoa, a volcanic
island in the Indian Ocean, which erupted in 1883 (Whittaker

and Bush, 1993); the Amazon rainforest, which is a typical
case of a mutually optimizing life/environment system
(Harding, 2006); Earth’s temperature (Harding, 2006);

Earth’s atmospheric composition (Lenton, 1998); and the
ocean’s mineral content (Lovelock, 1990). This is not to say
that biogeography is optimal for any particular species. Life

flourishes and evolves on Earth, but not necessarily in a
human-centric way.

Biogeography is a positive feedback phenomenon, similar

to natural selection. In natural selection, as species become
fitter, they are more likely to survive. As they thrive, they dis-
perse and become better able to adapt to their environment.

Natural selection, like biogeography, entails positive feed-
back. However, the time scale of biogeography is much
shorter than that of natural selection, which hints at the pos-

sibility of improved optimization performance by using bio-
geography rather than natural selection as a motivating

Ma et al. 191

paradigm for optimization (i.e. BBO rather than GAs). The

viewpoint of biogeography as an optimization process moti-

vated the development of BBO as an evolutionary optimiza-

tion algorithm (Simon, 2008), which we discuss next.

Biogeography-based optimization

BBO is a new optimization approach inspired by biogeogra-

phy. A biogeography habitat corresponds to a candidate solu-

tion of an optimization problem. Therefore, the number of

habitats in BBO corresponds to the BBO population size.

Each candidate solution is comprised of a set of features,

which are similar to genes in GAs, and which are also called

independent variables or decision variables. The number of

species in each habitat corresponds to the problem dimension.

We see that contrary to natural biogeography, all of the habi-

tats in BBO (i.e. the candidate solutions) have the same num-

ber of species (i.e. independent variables).
Like other EAs (Schwefel, 1993), BBO probabilistically

shares information between candidate solutions to improve

candidate solution fitness. In BBO, each candidate solution

immigrates features from other candidate solutions based on

its immigration rate, and emigrates features to other candi-

date solutions based on its emigration rate. In the original

BBO paper (Simon, 2008), immigration rates are first used to

decide probabilistically whether to immigrate solution fea-

tures to a given solution. Then, if immigration is selected,

emigration rates are used to choose the emigrating solution.

Migration can be expressed as

xi sð Þ xj sð Þ ð1Þ

where xi denotes the immigrating solution, xj denotes the emi-

grating solution and s denotes a solution feature index. In

BBO, each candidate solution x has an immigration rate l and

emigration rate m. A good solution has relatively high m and

low l, while the converse is true for a poor solution. According

to Simon (2008), these functions can be calculated as

l= 1� f xð Þ
m= f xð Þ

ð2Þ

where f denotes solution fitness and is normalized to the range

[0, 1]. After migration, we probabilistically decide whether to

mutate each feature of each candidate solution.
A description of one generation of BBO is given in

Algorithm 1. Migration and mutation of the entire popula-

tion takes place before any of the solutions are replaced in

the population, which requires the use of the temporary pop-

ulation z in the algorithm. In Algorithm 1, the statement ‘use

lk to probabilistically decide whether to immigrate to zk’ can

be implemented with the following logic, where rand(0, 1) is a

random number uniformly distributed between 0 and 1:

In Algorithm 1, the statement ‘Use {mi} to probabilistically
select the emigrating solution yj’ can be implemented with any

fitness-based selection method since mi is proportional to the

fitness of yi. For instance, we could use tournament selection
by randomly choosing two or more solutions for a tourna-

ment, and then selecting yj as the fittest solution in the tourna-

ment. In this paper, as in most other BBO implementations,
we use {mi} in a roulette-wheel algorithm so that the probabil-

ity that each individual yi is selected for emigration is propor-

tional to its emigration rate mi. Standard BBO uses rank-
based selection, i.e. we rank the individuals according to fit-

ness values, giving the best individual a rank of N (where N is

the population size), and giving the worst individual a rank of
1. Rank-based selection then assigns l and m on the basis of

rankings rather than on the basis of absolute fitness values

(Simon, 2013).

A Markov model of BBO

This section reviews a Markov model of BBO. This model will

be used later to mathematically analyse the effect of fitness

function noise on BBO.

Algorithm 1: One generation of the BBO algorithm, where N is the population size. y is the entire population of candidate

solutions, yk is the kth candidate solution, and yk(s) is the sth feature of yk.

For each solution yk, define emigration rate mk proportional to fitness of yk, where mk2[0,1]
For each solution yk, define immigration rate lk=1 2mk

z y

For each solution zk (k=1 to N)
For each solution feature s
Use lk to probabilistically decide whether to immigrate to zk
If immigrating then

Use {mi} to probabilistically select the emigrating solution yj
zk(s) yj(s)

End if
Next solution feature
Probabilistically decide whether to mutate zk

Next solution
y z

If lk \ rand(0,1) then
Immigration to zk does occur

else
Immigration does not occur

end if

192 Transactions of the Institute of Measurement and Control 37(2)

Consider a q-dimensional binary optimization problem

with search space {x1, ., xn}. The search space is the set of
all bit strings xi, each consisting of q bits. Therefore, the car-
dinality of the search space is n=2q. Suppose that BBO is cur-

rently in generation t. Denote the kth candidate solution in
the BBO population as yk, where k2[1, N], and where N is the
population size. Based on the previously derived transition
probability of BBO (Simon et al., 2011), the probability that

migration results in yk being equal to xi at generation t+1, is
given by

mki = Pr yk, t+ 1 = xið Þ

=
Yq

s= 1

1� lkð Þ10 yk sð Þ � xi sð Þð Þð Þ|ffl{zffl}
Probability if immigration

does not occur

+ lk

P
j2§i sð Þ vjmjPn
j= 1 vjmj

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Probability if immigration

does occur

2
6666664

3
7777775
ð3Þ

where 10 is the indicator function on the set 0 (i.e. 10(a)=1 if
a=0, and 10(a)=0 if a6¼0), s denotes the index of the candi-

date solution feature (i.e. the bit number), lk denotes the
immigration rate of candidate solution yk, mj denotes the emi-
gration rate of the candidate solution xj and vj denotes the
number of xj individuals in the population. The notation §i(s)

denotes the set of search space indices j such that the sth bit
of xj is equal to the sth bit of xi, i.e. §i(s)={j: xj(s)=xi(s)}. mki

is the probability that the kth individual in the population is

equal to the ith individual in the search space when only
migration is considered (no mutation). Note that the first
term in the product on the right side of (3) denotes the prob-
ability that yk,t+1(s)=xi(s) if immigration of the sth candi-

date solution feature did not occur, and the second term
denotes the probability if immigration of the sth candidate
solution feature did occur. For a detailed derivation, see

Simon et al. (2011).
Mutation operates independently on each candidate solu-

tion by probabilistically reversing each bit in each candidate
solution. Suppose that the event that each bit of a candidate

solution is flipped is stochastically independent and occurs with
probability pm2(0, 1). Then the probability that a candidate
solution that is equal to xi mutates to xj can be written as

uij = Pr xi ! xj

� �
= pHij

m 1� pmð Þq�Hij ð4Þ

where q is the number of bits in each candidate solution, and
Hij represents the Hamming distance between bit strings xi
and xj.

The Markov model presented above will be used in the fol-

lowing section to analyse mathematically the effect of noise
on BBO.

The influence of noise on BBO

Up to this point, BBO applications in the literature have typi-

cally been implemented on deterministic problems. That

means that the fitness calculation of each solution is

noise-free, but in the real world, noiseless environments

do not exist. In a noisy environment, the calculated fitness

is not equal to the true fitness, the immigration and emigra-

tion rates in BBO will be calculated incorrectly, and BBO
migration may not accomplish its intended purpose. Fitness

noise can be represented in a very general form (Jin and

Branke, 2005), but in this paper we assume the most simple

and most common type of noise, which is additive and

Gaussian.
Consider two solutions, x1 and x2. Their true fitness values

are denoted by f1 and f2, respectively, and the fitness function

evaluation noise is denoted by w1 and w2, respectively.

Assume that the true fitness of x1 is better than that of x2, i.e.

f1 . f2 ð5Þ

However, the measured fitness of x1 may be less than that of

x2 because of noise, i.e.

f1 +w1\ f2 +w2 ð6Þ

If noise has a strong effect on measured fitness, the rank of

the measured fitness values could be much different from the
rank of the true fitness values. Du (2009) computes the prob-

ability of fitness ranks changing due to noise.
In this paper, we assume w1 and w2 are additive noises,

because additive noise is the predominant noise model due to

its frequent occurrence in various measurement systems.

Additive noise is often assumed to be Gaussian due to its wide
prevalence in both natural and engineering systems. Non-

Gaussian noise, such as Cauchy noise, has also been consid-

ered (Arnold and Beyer, 2003). It is plausible to assume that

the noise cannot exceed certain limits due to the characteris-

tics of the fitness measurement instrument. These assumptions

have theoretical and practical impacts on noisy EAs, but are
not considered further in this paper.

Example

Now we give an example of the effect of noise on BBO per-
formance using the Markov transition probabilities of the

previous section. Suppose we have a two-bit problem (q=2,

n=4) with a population size N=3. The search space

consists of bit strings x= x1, x2, x3, x4f g= 00, 01, 10, 11f g
with corresponding fitness values f = f1, f2, f3, f4f g=
0:2, 0:4, 0:6, 0:8f g. Suppose that the three individuals in the

current population are y= x1, x2, x3f g= 00, 01, 10f g. In

the noise-free case, the fitness value of x1 is f1 = 0:2, and its

corresponding immigration rate and emigration rate are

l1 = 0:8 and m1 = 0:2, as indicated by (2). The fitness value
of x2 is f2 = 0:4, with corresponding immigration rate and

emigration rate l2 = 0:6 and m2 = 0:4. We perform probabil-

istic migration to see if x1 and x2 can transition to the optimal

solution x4 = 11. Based on (3), the probability of x1 transi-

tioning to the optimal solution due to migration only (no
mutation) is

Ma et al. 193

Pr x1 ! x4ð Þ

=
Y2

s= 1

1� l1ð Þ10 x1 sð Þ � x4 sð Þð Þð Þ+ l1

P
j2§4 sð Þ vjmjP4
j= 1 vjmj

 !" #

= 1� l1ð Þ10 x1 1ð Þ � x4 1ð Þð Þ+l1

P
j2 3, 4f g vjmjP4

j= 1 vjmj

" #

1� l1ð Þ10 x1 2ð Þ � x4 2ð Þð Þ+l1

P
j2 2, 4f g vjmjP4

j= 1 vjmj

" #

= 0:107

The probability of x2 transitioning to the optimal solution
due to migration only is

Pr x2 ! x4ð Þ

=
Y2

s= 1

1� l2ð Þ10 x2 sð Þ � x4 sð Þð Þð Þ+ l2

P
j2§4 sð Þ vjmjP4
j= 1 vjmj

 !" #

= 1� l2ð Þ10 x2 1ð Þ � x4 1ð Þð Þ+l2

P
j2 3, 4f g vjmjP4

j= 1 vjmj

" #

1� l2ð Þ10 x2 2ð Þ � x4 2ð Þð Þ+l2

P
j2 2, 4f g vjmjP4

j= 1 vjmj

" #

= 0:180

Next suppose that noise corrupts the measured fitness of x1
and x2. Suppose that the measured fitness of x1 is f 91 = 0:3
and the measured fitness of x2 is f 92 = 0:2, so that f 91 . f 92.
In this case, the immigration rate and the emigration rate of
x1 are l91 = 0:7 and m91 = 0:3 respectively, and the immigra-
tion rate and the emigration rate of x2 are l92 = 0:8 and

m92 = 0:2 respectively. We perform a migration trial to see if
x1 and x2 can transition to the optimal solution x4 = 11.
Based on (3), the probability of x1 transitioning to the opti-
mal solution due to migration only is

Pr
noise

x1 ! x4ð Þ

=
Y2

s= 1

1� l1ð Þ10 x1 sð Þ � x4 sð Þð Þð Þ+ l1

P
j2§4 sð Þ vjmjP4
j= 1 vjmj

 !" #
= 0:049

The probability of x2 transitioning to the optimal solution
due to migration only is

Pr
noise

x2 ! x4ð Þ

=
Y2

s= 1

1� l2ð Þ10 x2 sð Þ � x4 sð Þð Þð Þ+ l2

P
j2§4 sð Þ vjmjP4
j= 1 vjmj

 !" #
= 0:151

We see that the probabilities that the two individuals
x1 and x2 transition to the optimal solution change signifi-
cantly. We further find that these two probabilities both

decrease, with the probability of x1 decreasing from 0.107 to
0.049, and the probability of x2 decreasing from 0.180 to
0.151.

Now suppose that the mutation rate probability pm is 0.1

per bit. We can combine (3) and (4) to find the following tran-
sition probabilities in the noise-free case:

Prm(x1 ! x4)= 0:132

Prm(x2 ! x4)= 0:197

Prm, noise(x1 ! x4)= 0:082

Prm, noise(x2 ! x4)= 0:169

We see that even with mutation, the probability of transition-
ing to the optimal solution x4 decreases when noise corrupts
the fitness evaluations. However, mutation tends to even out
the probabilities. Without mutation, we saw that the prob-

ability of x1 transitioning to the optimal solution decreases
from 0.107 to 0.049, a decrease of 54%, and the probability
of x2 transitioning to the optimal solution decreases from
0.180 to 0.151, a decrease of 16%. However, with a mutation
rate of 0.1, we saw that the probability of x1 transitioning to

the optimal solution decreases from 0.132 to 0.082, a decrease
of 38%; and the probability of x2 transitioning to the optimal
solution decreases from 0.197 to 0.169, a decrease of 14%.
Noise damages the migration mechanism of BBO, but some
of that damage can be mitigated with a high mutation rate.

Simulation results

In this section, we apply re-sampling to BBO to improve BBO
performance in noisy environments. We also compare BBO
with other EAs that use re-sampling, including PSO, DE,

CPSO and SaDE. Then we compare the performance of BBO
with re-sampling and BBO augmented with Kalman filtering
(KBBO).

BBO with re-sampling

In noisy problems, measured fitness values include noise.
Therefore, as we showed in the previous section, the mea-

sured values are not perfectly accurate, and they do not per-
fectly reflect the true value of the fitness. BBO uses the fitness
of each solution to determine its immigration and emigration
rate. Because of noise, measured fitness is not true fitness, the
immigration and emigration rates in BBO are incorrect, and
this negatively affects BBO migration. Re-sampling is used to

sample the fitness of each candidate solution several times
and calculate the average as the estimated fitness.

Suppose that the ith sample gi(x) of the fitness function of
a candidate solution x is given by

gi xð Þ= f (x)+wi ð7Þ

where f(x) is the true fitness, and wi is the additive noise at the
ith measurement. If we re-sample the measured fitness func-
tion l times, the best estimate of the true fitness is

f̂ xð Þ= 1

l

Xl

i= 1

gi(x) ð8Þ

Re-sampling is a straightforward and effective way to handle
noise in fitness functions, and one of the most important con-
tributions of re-sampling is that it does not need any control

parameters except for the number of re-samples. The flow-
chart of BBO with re-sampling is shown in Figure 1. It is

194 Transactions of the Institute of Measurement and Control 37(2)

worth pointing out that in Figure 1, we can use PSO, DE or
any other EA instead of BBO to alleviate the effects of noise.

Test set-up

In this paper, we use a fixed number of total fitness evalua-
tions for each benchmark and each algorithm to provide fair
performance comparisons. We run experiments with l=1, 5,
20 and 50, where l is the total number of fitness evaluations
per candidate solution per generation. We also compare per-
formance results on noise-free problems.

A representative set of noiseless and noisy benchmark
functions have been used for performance testing. For the
noiseless functions, we have selected the 25 test problems,
each with 30 dimensions, which appeared in the CEC 2005
special session on real parameter optimization (Suganthan
et al., 2005). These noiseless functions are summarized in
Table 1, and include five unimodal functions and 20 multimo-
dal functions. The functions also include 12 basic functions,
two expanded functions and 11 hybrid functions. Many other
benchmarks have been published in the literature, but we use
these benchmarks because many studies of EA performance
on these benchmarks are available in the literature.

All functions are shifted in order to ensure that their
optima are not at the centre of the search space. The noisy
benchmark functions are defined as

fNoisy ~xð Þ= f ~xð Þ+ N 0, 1ð Þj j ð9Þ

where N 0, 1ð Þj j is the absolute value of a Gaussian random
variable with mean 0 and variance 1. Note that all benchmark
functions are minimization problems.

Table 1. Benchmark functions.

Function Name Domain Minimum

F1 Shifted Sphere Function �100<xi<100 2450

F2 Shifted Schwefel Problem 1.2 �100<xi<100 2450

F3 Shifted Rotated High Conditioned Elliptic Function �100<xi<100 2450

F4 Shifted Schwefel Problem 1.2 with Noise in Fitness �100<xi<100 2450

F5 Schwefel Problem 2.6 with Global Optimum on Bounds �100<xi<100 2310

F6 Shifted Rosenbrock Function �100<xi<100 390

F7 Shifted Rotated Griewank Function without Bounds 0<xi<600 2180

F8 Shifted Rotated Ackley’s Function with Global Optimum on Bounds �32<xi<32 2140

F9 Shifted Rastrigin Function �5<xi<5 2330

F10 Shifted Rotated Rastrigin Function �5<xi<5 2330

F11 Shifted Rotated Weierstrass Function �0:5<xi<0:5 90

F12 Schwefel Problem 2.13 �100<xi<100 2460

F13 Expanded Extended Griewank plus Rosenbrock Function (F8F2) �3<xi<1 2130

F14 Shifted Rotated Expanded Schaffer F6 �100<xi<100 2300

F15 Hybrid Composition Function �5<xi<5 120

F16 Rotated Hybrid Composition Function �5<xi<5 120

F17 Rotated Hybrid Composition Function with Noise in Fitness �5<xi<5 120

F18 Rotated Hybrid Composition Function �5<xi<5 10

F19 Rotated Hybrid Composition Function with a Narrow Basin for the Global Optimum �5<xi<5 10

F20 Rotated Hybrid Composition Function with the Global Optimum on the Bounds �5<xi<5 10

F21 Rotated Hybrid Composition Function �5<xi<5 360

F22 Rotated Hybrid Composition Function with high Condition Number matrix �5<xi<5 360

F23 Non-Continuous Rotated Hybrid Composition Function �5<xi<5 360

F24 Rotated Hybrid Composition Function �5<xi<5 260

F25 Rotated Hybrid Composition Function without Bounds �5<xi<5 260

More details about these functions can be found in Suganthan et al. (2005).

Initialize population and
evaluate fitness

Maximum number of
Function evaluations reached?

Sample the fitness of each
candidate solution several

times and calculate the
average

Perform migration and
mutation to obtain new

solutions

Re-evaluate fitness of
new solutions

End

N

Y

Start

Figure 1. Flowchart of biogeography-based optimization with

re-sampling.

Ma et al. 195

Comparisons with other EAs

To illustrate the performance BBO on noisy optimization prob-

lems, we compare with four other EAs: a basic DE algorithm,

a basic PSO algorithm, SaDE and CPSO. All algorithms are

combined with re-sampling. Note that the four algorithms that

we choose form a representative set rather than a complete set.

We compare with DE because it is an effective EA and has

demonstrated excellent performance (Das and Suganthan,

2011). We compare with SaDE because it is one of the best

DE variants (Zhao et al., 2011), and it uses a self-adaptive

mechanism on control parameters F (scaling factor) and CR

(crossover rate); each candidate solution in the population is

extended with control parameters F and CR that are adjusted

during evolution. We compare with the current standard PSO

algorithm obtained from Particle Swarm Central (http://

www.particleswarm.info/) because it usually offers good perfor-

mance and is a relatively new EA (Bratton and Kennedy,

2007). We compare with CPSO because it has a structure that

is more complex than standard PSO, and demonstrates good

performance (Clerc and Kennedy, 2002; Eberhart and Shi,

2000).
For BBO, the following parameters have to be tuned: pop-

ulation size, maximum migration rate and mutation rate. In

Ma (2010), these parameters have been discussed in detailed.

Here we use a reasonable set of tuning parameters, but do not

make any effort at finding the best settings. The parameters

that we use are: maximum immigration and emigration rate

of 1, and mutation probability of 0.01 per generation per solu-

tion feature, with uniform mutation centred at the middle of

the search domain. In addition, we use linear migration curves

as described in (2).
For DE, we use the parameters recommended by Clerc

(2006), Eberhart and Shi (2004), Eberhart et al. (2001), and

Onwubolu and Babu (2004): F=0.5 and CR=0.5.
For PSO, we use the parameters recommended by

Onwubolu and Babu (2004), Price and Storn (1997), and

Storn (1999): inertia weight of 0.3, cognitive constant of 1,

social constant for swarm interaction of 1.0, and social con-

stant for neighbourhood interaction of 1.0.
For SaDE, the parameter settings are adapted according

to the learning progress (Zhao et al., 2011): F is randomly

sampled from the normal distribution N(0.5, 0.3), and CR

follows the normal distribution N(0.5, 0.1).
For CPSO, we use a constriction coefficient

K = 2
.

2� u�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4u

p��� ���, where u= 4:1 (Clerc and

Kennedy, 2002). The other parameters of CPSO are the same

as those of PSO.
Each algorithm has a population size of 50, and a fixed

number of total fitness evaluations (NumEval) of 100,000.

The noise-handling method in each algorithm uses re-sam-

pling. Each function is optimized over 25 independent runs.

We use the same set of initial random populations to evaluate

each algorithm.
The benchmark function results are shown in Tables 2–4.

We observe that for noiseless benchmark functions, SaDE

performs the best on 14 functions, BBO performs the best on

six functions, CPSO performs the best on five functions, DE

performs the best on one function and PSO does not perform

best on any of the functions.

The number of fitness re-samples strongly affects optimi-

zation performance. When the number of fitness re-samples is

one, SaDE performs the best on 14 functions, CPSO per-
forms the best on four functions, DE performs the best on

four functions, PSO performs the best on three functions and

BBO performs the best on two functions. When the number
of fitness re-samples is five, 20 or 50, SaDE performs the best

on 14 functions, BBO performs the best on six functions,

CPSO performs the best on five functions, DE performs the
best on one function and PSO does not perform best on any

of the functions. Note that these results are the almost same

as those obtained for the noiseless benchmark functions. If
we tested other state-of-the-art DE and PSO algorithms, we

could probably obtain better optimization results (Das et al.,

2005; Mendel et al., 2011; Pietro et al., 2004). However, the
same could be said for recently proposed improvements of

BBO (Du et al., 2009; Ergezer et al., 2009).
We find that for many of the noisy benchmark functions,

the performance of BBO does not dramatically improve as

the number of re-samples increases. For example, for F3,
BBO performs almost the same when the number of fitness

re-samples is 20 or 50, but worse than when the number of fit-

ness re-samples is five. There is a point of diminishing returns
with the number of re-samples. If the number of re-samples is

too large, then we end up wasting fitness function evaluations

on increased estimation accuracy, because we already have
sufficient estimation accuracy with fewer re-samples.

We see that re-sampling alleviates the effect of noise for the

benchmark functions that we studied, but it is hard to quantify

how many times we have to sample a noisy function to achieve
a desired fitness value. Many re-samples might not be feasible

for expensive fitness functions, and might not be necessary for

all problems. However, our results show that re-sampling is a
simple and effective approach to deal with noise.

Table 5 shows the results of Wilcoxon test comparisons

between BBO and each of the other four EAs. The Wilcoxon

test is a non-parametric statistical method to determine whether
differences between groups of data are statistically significant

when the assumptions that the differences are independent and

identically normally distributed are not satisfied (Al-Rifaie and
Blackwell, 2012; Demsar, 2006; Derrac et al., 2011). Pairs are

marked in Table 5 if the difference between the pair of algo-

rithms has a level of significance a= 0:05 or less. We have a
total 125 groups of data for the noiseless and noisy benchmark

functions. We see the following from Table 5:

� There are 63 statistically significant differences
between DE and BBO, including:

8 37 groups of data for which BBO is better;

8 26 groups of data for which DE is better.

� There are 90 statistically significant differences
between SaDE and BBO, including:

8 31 groups of data for which BBO is better;

8 59 groups of data for which SaDE is better.

� There are 75 statistically significant differences
between PSO and BBO, including:

8 61 groups of data for which BBO is better;

8 14 groups of data for which PSO is better.

196 Transactions of the Institute of Measurement and Control 37(2)

T
a
b

le
2
.

Si
m

u
la

ti
o
n

re
su

lt
s

fo
r

F1
–
F8

.

Fu
nc

ti
o
n

D
E

Sa
D

E
P
SO

C
P
SO

B
B
O

F1
2
.2

3
E2

0
8
6

4
.1

6
E2

0
9

3
.7

6
E2

0
8
6

2
.8

7
E2

0
9

3
.2

8
E+

0
1
6

6
.7

7
E+

0
0

7
.2

0
E
2

0
86

5
.2

6E
2

0
9

0
.0

0
E
+

0
0
6

0
.0

0
E
+

0
0

F1
*
,
l=

1
0
.0

0
E
+

0
0
6

0
.0

0
E
+

0
0

8
.6

3
E2

0
4
6

2
.1

9
E2

0
5

7
.1

2
E+

0
1
6

4
.1

9
E+

0
0

3
.1

9
E
2

0
56

4
.4

8E
2

0
6

2
.4

5E
2

0
1
6

3
.4

6
E2

0
2

F1
*
,
l=

5
4
.9

1
E2

0
2
6

5
.2

0
E2

0
3

5
.7

6
E2

0
4
6

1
.3

4
E2

0
5

2
.4

7
E+

0
1
6

1
.8

5
E+

0
0

5
.4

4
E
2

0
16

2
.2

5E
2

0
2

3
.1

6
E

2
0
6
6

7
.0

4
E

2
0
7

F1
*
,
l=

2
0

5
.7

0
E+

0
06

1
.6

6E
2

0
1

2
.2

1
E2

0
1
6

1
.9

9
E2

0
2

2
.7

1
E+

0
1
6

1
.9

9
E+

0
0

6
.7

8
E
+

0
0
6

1
.3

5
E2

0
1

3
.4

7
E

2
0
5
6

2
.3

5
E

2
0
6

F1
*
,
l=

5
0

9
.5

4
E+

0
06

6
.3

4E
2

0
1

6
.9

8
E2

0
1
6

3
.2

2
E2

0
2

3
.2

2
E+

0
1
6

1
.5

7
E+

0
0

2
.9

0
E
+

0
0
6

1
.2

7
E2

0
1

7
.1

9
E

2
0
4
6

4
.6

5
E

2
0
5

F2
0
.0

0
E
+

0
0
6

0
.0

0
E
+

0
0

0
.0

0
E
+

0
0
6

0
.0

0
E
+

0
0

7
.8

9
E+

0
0
6

1
.5

4
E2

0
1

1
.7

2
E
2

0
26

3
.5

9E
2

0
3

4
.1

1E
2

0
3
6

2
.3

5
E2

0
4

F2
*
,
l=

1
0
.0

0
E
+

0
0
6

0
.0

0
E
+

0
0

6
.7

8
E2

0
4
6

0
.0

0
E2

0
5

1
.3

8
E+

0
1
6

5
.2

6
E+

0
0

7
.6

6
E
2

0
26

8
.2

1E
2

0
3

7
.8

4E
2

0
2
6

3
.2

2
E2

0
3

F2
*
,
l=

5
7
.0

3
E

2
0
4
6

1
.2

9
E

2
0
5

8
.4

5
E2

0
4
6

8
.2

6
E2

0
3

7
.1

1
E+

0
1
6

3
.4

8
E+

0
0

6
.9

8
E
2

0
26

1
.3

2E
2

0
3

5
.2

4E
2

0
2
6

8
.1

5
E2

0
3

F2
*
,
l=

2
0

7
.5

8
E

2
0
2
6

3
.4

7
E

2
0
3

9
.6

4
E2

0
2
6

2
.9

5
E2

0
3

6
.0

1
E+

0
1
6

3
.0

5
E+

0
0

4
.2

7
E
2

0
16

5
.1

1E
+

0
0

6
.3

4E
2

0
1
6

2
.1

8
E2

0
2

F2
*
,
l=

5
0

8
.1

7
E

2
0
2
6

7
.6

5
E

2
0
3

8
.9

0
E2

0
2
6

3
.4

5
E2

0
3

9
.1

2
E+

0
1
6

7
.4

1
E+

0
0

2
.4

5
E
2

0
16

3
.3

1E
+

0
0

7
.4

5E
2

0
1
6

5
.3

3
E2

0
2

F3
5
.3

4
E2

0
7
6

6
.1

5
E2

0
8

2
.5

1
E

2
0
9
6

8
.9

0
E

2
1
0

7
.0

2
E+

0
2
6

4
.9

6
E+

0
1

4
.4

3
E
2

0
16

1
.7

8E
2

0
2

9
.0

4E
+

0
06

1
.2

8
E
2

0
1

F3
*
,
l=

1
4
.0

0
E2

0
6
6

3
.2

4
E2

0
7

1
.4

4
E

2
0
7
6

1
.3

6
E

2
0
8

5
.9

3
E+

0
3
6

1
.2

2
E+

0
1

5
.2

9
E
+

0
0
6

3
.7

4
E2

0
1

7
.6

4E
+

0
26

8
.2

3
E
+

0
1

F3
*
,
l=

5
8
.1

4
E+

0
16

9
.2

5E
+

0
0

2
.5

5
E
+

0
0
6

1
.1

7
E
+

0
0

7
.6

5
E+

0
3
6

2
.3

9
E+

0
1

2
.5

8
E
+

0
1
6

4
.3

6
E+

0
0

9
.0

5E
+

0
16

2
.3

4
E
+

0
0

F3
*
,
l=

2
0

7
.3

4
E+

0
16

5
.2

7E
+

0
0

6
.6

0
E
+

0
0
6

7
.1

9
E

2
0
1

1
.4

6
E+

0
3
6

2
.1

1
E+

0
1

1
.1

8
E
+

0
1
6

3
.6

0
E+

0
0

2
.6

2E
+

0
26

7
.5

1
E
+

0
1

F3
*
,
l=

5
0

3
.2

0
E+

0
16

5
.6

3E
2

0
1

2
.4

3
E
+

0
0
6

8
.0

9
E

2
0
1

7
.8

1
E+

0
3
6

1
.6

6
E+

0
2

1
.0

9
E
+

0
1
6

2
.9

8
E2

0
1

2
.2

4E
+

0
26

8
.4

7
E
+

0
1

F4
9
.3

0
E2

0
8
6

1
.2

4
E2

0
9

5
.6

7
E2

0
9
6

2
.8

5
E2

1
0

2
.7

2
E+

0
0
6

5
.3

4
E+

0
0

1
.4

4
E

2
0
9
6

7
.8

6
E

2
1
0

6
.0

4E
2

0
9
6

4
.4

5
E2

1
0

F4
*
,
l=

1
9
.7

1
E

2
1
4
6

7
.5

6
E

2
1
5

4
.3

6
E2

0
7
6

1
.1

8
E2

0
8

3
.0

2
E+

0
1
6

2
.3

3
E+

0
0

2
.1

9
E
2

0
86

5
.4

8E
2

0
9

1
.7

8E
+

0
06

5
.4

7
E
2

0
1

F4
*
,
l=

5
8
.0

4
E2

0
1
6

3
.1

4
E2

0
0

6
.9

7
E2

0
5
6

5
.1

9
E2

0
6

7
.6

4
E+

0
1
6

8
.2

3
E+

0
0

2
.3

6
E

2
0
6
6

6
.6

2
E

2
0
7

9
.3

8E
2

0
3
6

2
.5

5
E2

0
4

F4
*
,
l=

2
0

4
.3

6
E2

0
1
6

2
.1

8
E2

0
0

2
.4

4
E2

0
3
6

6
.3

1
E2

0
4

7
.6

5
E+

0
1
6

9
.0

4
E+

0
0

1
.9

9
E

2
0
4
6

5
.4

7
E

2
0
5

1
.2

4E
2

0
3
6

3
.6

5
E2

0
4

F4
*
,
l=

5
0

8
.1

6
E2

0
1
6

2
.5

8
E2

0
0

9
.0

8
E2

0
3
6

1
.1

6
E2

0
4

1
.3

7
E+

0
1
6

8
.4

2
E
+

0
0

2
.1

9
E

2
0
4
6

3
.5

2
E

2
0
5

5
.6

9E
2

0
3
6

3
.2

2
E2

0
4

F5
4
.7

8
E2

0
2
6

2
.5

4
E2

0
3

4
.7

6
E

2
0
3
6

1
.2

3
E

2
0
4

7
.6

8
E+

0
2
6

1
.2

3
E+

0
1

6
.3

4
E
+

0
1
6

7
.0

8
E+

0
0

4
.5

7E
+

0
06

2
.7

4
E
2

0
1

F5
*
,
l=

1
8
.2

4
E2

0
1
6

5
.1

7
E2

0
2

9
.9

0
E

2
0
2
6

1
.3

5
E

2
0
3

8
.6

5
E+

0
2
6

4
.1

8
E+

0
1

5
.1

0
E
2

0
16

4
.5

2E
2

0
2

9
.0

7E
+

0
26

5
.2

2
E
+

0
1

F5
*
,
l=

5
9
.2

6
E+

0
16

1
.7

2E
+

0
0

8
.0

3
E
+

0
0
6

2
.2

9
E
+

0
0

7
.4

4
E+

0
2
6

2
.3

5
E+

0
1

6
.9

0
E
+

0
1
6

2
.6

3
E+

0
0

9
.0

2E
+

0
16

7
.3

1
E
+

0
0

F5
*
,
l=

2
0

2
.5

8
E+

0
16

4
.1

6E
+

0
0

5
.7

1
E
+

0
0
6

2
.5

8
E

2
0
1

7
.1

7
E+

0
2
6

3
.9

0
E+

0
1

1
.9

7
E
+

0
1
6

2
.5

4
E+

0
0

4
.6

6E
+

0
16

6
.0

1
E
+

0
0

F5
*
,
l=

5
0

6
.7

1
E+

0
16

3
.5

8E
+

0
0

4
.6

7
E
+

0
0
6

7
.7

0
E

2
0
1

9
.0

1
E+

0
2
6

9
.8

7
E+

0
1

2
.1

6
E
+

0
1
6

8
.0

9
E+

0
0

5
.7

4E
+

0
26

5
.3

6
E
+

0
1

F6
1
.2

8
E2

0
8
6

4
.5

6
E
2

0
9

3
.2

6
E2

1
0
6

1
.1

9
E2

1
1

9
.3

2
E+

0
2
6

5
.4

4
E+

0
1

3
.8

8
E
2

0
26

4
.3

2E
2

0
3

0
.0

0
E
+

0
0
6

0
.0

0
E
+

0
0

F6
*
,
l=

1
0
.0

0
E
+

0
0
6

0
.0

0
E
+

0
0

0
.0

0
E
+

0
0
6

0
.0

0
E
+

0
0

9
.0

0
E+

0
3
6

1
.1

2
E+

0
1

8
.3

6
E
+

0
0
6

4
.2

9
E2

0
1

4
.9

2E
+

0
16

1
.3

7
E
+

0
0

F6
*
,
l=

5
9
.1

2
E2

0
6
6

7
.6

5
E2

0
7

4
.5

4
E2

0
4
6

2
.2

1
E2

0
5

8
.3

2
E+

0
3
6

7
.4

5
E+

0
2

7
.8

6
E
2

0
16

1
.1

0E
2

0
2

9
.0

4
E

2
0
6
6

4
.3

2
E

2
0
7

F6
*
,
l=

2
0

5
.8

6
E2

0
6
6

4
.2

5
E2

0
7

1
.9

7
E2

0
3
6

2
.5

3
E2

0
4

4
.0

1
E+

0
3
6

2
.3

6
E+

0
2

5
.2

7
E
2

0
16

8
.0

9E
2

0
2

7
.6

9
E

2
0
7
6

5
.3

1
E

2
0
8

F6
*
,
l=

5
0

7
.1

3
E2

0
6
6

2
.4

8
E2

0
7

9
.0

2
E2

0
3
6

3
.1

1
E2

0
4

5
.2

7
E+

0
3
6

4
.1

7
E+

0
2

1
.6

6
E
2

0
16

2
.1

4E
2

0
2

0
.0

0
E
+

0
0
6

0
.0

0
E
+

0
0

F7
9
.0

4
E+

0
36

3
.1

2E
+

0
2

5
.6

5
E+

0
2
6

9
.6

5
E+

0
1

8
.5

4
E+

0
2
6

8
.7

7
E+

0
1

6
.8

7
E
+

0
2
6

9
.1

2
E+

0
1

1
.4

6
E
+

0
1
6

3
.5

4
E
+

0
0

F7
*
,
l=

1
5
.2

1
E+

0
26

2
.4

7E
+

0
1

3
.1

6
E+

0
2
6

5
.4

4
E+

0
1

1
.0

0
E
+

0
1
6

2
.7

4
E
+

0
0

8
.4

3
E
+

0
2
6

6
.7

7
E+

0
1

9
.7

4E
+

0
36

2
.5

3
E
+

0
4

F7
*
,
l=

5
6
.3

5
E+

0
36

7
.9

8E
+

0
2

1
.9

2
E+

0
2
6

3
.3

1
E+

0
1

3
.7

2
E+

0
1
6

4
.2

6
E+

0
0

5
.4

7
E
+

0
0
6

3
.1

6
E
+

0
0

8
.7

3E
+

0
36

2
.1

7
E
+

0
4

F7
*
,
l=

2
0

1
.2

3
E+

0
26

5
.7

4E
+

0
1

4
.3

8
E+

0
1
6

4
.6

7
E+

0
0

8
.3

4
E+

0
1
6

2
.4

7
E+

0
0

4
.4

0
E
+

0
0
6

6
.4

9
E

2
0
1

5
.6

8E
+

0
46

1
.2

4
E
+

0
5

F7
*
,
l=

5
0

2
.3

1
E+

0
36

4
.0

6E
+

0
2

2
.1

6
E+

0
2
6

3
.8

8
E+

0
1

3
.5

4
E+

0
1
6

1
.2

8
E+

0
0

8
.8

1
E
+

0
0
6

2
.2

7
E

2
0
1

3
.7

2E
+

0
46

4
.2

6
E
+

0
5

F8
5
.2

0
E+

0
16

3
.9

8E
+

0
0

1
.9

8
E2

0
2
6

2
.5

4
E2

0
3

9
.6

0
E+

0
2
6

8
.4

6
E+

0
1

6
.7

8
E

2
0
3
6

1
.1

5
E

2
0
4

2
.7

4E
2

0
2
6

4
.9

6
E2

0
3

F8
*
,
l=

1
1
.3

8
E+

0
06

7
.1

4E
2

0
1

7
.7

4
E+

0
0
6

3
.2

9
E2

0
1

7
.7

2
E+

0
1
6

1
.0

9
E+

0
0

3
.7

6
E
+

0
0
6

1
.2

3
E2

0
1

1
.0

5
E

2
0
1
6

2
.7

4
E

2
0
2

F8
*
,
l=

5
7
.5

4
E+

0
16

2
.1

6E
2

0
1

6
.8

9
E+

0
1
6

1
.3

6
E+

0
1

7
.3

8
E+

0
2
6

4
.4

7
E+

0
1

9
.0

7
E
+

0
1
6

7
.4

4
E+

0
0

5
.6

9
E
+

0
0
6

4
.4

8
E

2
0
1

F8
*
,
l=

2
0

5
.3

6
E+

0
16

4
.1

8E
+

0
0

5
.8

1
E+

0
1
6

2
.5

5
E+

0
0

8
.9

2
E+

0
2
6

1
.0

5
E+

0
1

1
.1

2
E
+

0
1
6

5
.4

3
E+

0
0

1
.2

2
E

2
0
1
6

5
.1

7
E

2
0
2

F8
*
,
l=

5
0

7
.7

6
E+

0
16

2
.1

5E
2

0
1

3
.1

2
E+

0
1
6

5
.2

4
E2

0
1

4
.5

6
E+

0
2
6

2
.7

4
E+

0
0

6
.8

0
E
+

0
1
6

1
.2

8
E2

0
1

6
.3

4
E

2
0
1
6

2
.5

8
E

2
0
2

H
er

e
[a

6
b
]

in
d
ic

at
es

th
e

m
ea

n
an

d
co

rr
es

p
o
n
d
in

g
st

an
d
ar

d
d
ev

ia
ti
o
n
s

o
f
th

e
er

ro
r

va
lu

es
.F

d
en

o
te

s
a

n
o
is

el
es

s
b
en

ch
m

ar
k

fu
n
ct

io
n
,
F*

d
en

o
te

s
a

n
o
is

y
b
en

ch
m

ar
k

fu
n
ct

io
n
,
an

d
ld

en
o
te

s
th

e
n
u
m

b
er

o
f

fit
n
es

s
re

-s
am

pl
es

.
T

h
e

b
es

t
p
er

fo
rm

an
ce

is
in

b
o
ld

fo
n
t

in
ea

ch
ro

w
.
D

E
,
d
iff

er
en

ti
al

ev
o
lu

ti
o
n
;
Sa

D
E
,s

el
f-

ad
ap

ti
ve

d
iff

er
en

ti
al

ev
o
lu

ti
o
n
;
P
SO

,p
ar

ti
cl

e
sw

ar
m

o
p
ti
m

iz
at

io
n
;
C

P
SO

,
p
ar

ti
cl

e
sw

ar
m

o
p
ti
m

iz
at

io
n

w
it
h

co
n
st

ri
ct

io
n
;
B
B
O

,
b
io

ge
o
gr

ap
hy

-b
as

ed
o
p
ti
m

iz
at

io
n
.

Ma et al. 197

T
a
b

le
3
.

Si
m

u
la

ti
o
n

re
su

lt
s

fo
r

F9
–
F1

6.

Fu
nc

ti
o
n

D
E

Sa
D

E
P
SO

C
P
SO

B
B
O

F9
8
.9

7
E+

0
0
6

1
.5

4
E2

0
1

0
.0

0
E
+

0
0
6

0
.0

0
E
+

0
0

7
.2

4
E+

0
1
6

4
.1

9
E+

0
0

4
.4

6
E2

0
8
6

3
.2

9
E2

0
9

8
.4

7E
2

1
6
6

2
.9

3
E2

1
7

F9
*
,
l=

1
1
.1

6
E2

0
1
6

2
.4

7
E2

0
2

3
.4

7
E

2
0
2
6

2
.5

6
E

2
0
3

6
.7

1
E+

0
1
6

5
.3

6
E+

0
0

8
.9

8
E2

0
2
6

4
.1

0
E2

0
3

7
.0

0E
+

0
06

1
.4

2
E
2

0
1

F9
*
,
l=

5
6
.3

5
E+

0
0
6

7
.0

1
E2

0
1

4
.3

0
E

2
0
6
6

5
.4

4
E

2
0
7

2
.5

8
E+

0
1
6

1
.2

9
E+

0
0

2
.4

5
E2

0
3
6

6
.7

9
E2

0
4

9
.6

1E
2

0
1
6

1
.2

5
E2

0
2

F9
*
,
l=

2
0

8
.4

2
E+

0
0
6

7
.5

4
E2

0
1

2
.1

9
E

2
0
4
6

6
.3

6
E

2
0
5

7
3
6
E
+

0
1
6

2
.8

7
E+

0
0

5
.3

8
E2

0
2
6

2
.2

0
E2

0
3

7
.3

8E
+

0
06

1
.4

5
E
2

0
1

F9
*
,
l=

5
0

8
.6

1
E+

0
0
6

9
.6

2
E2

0
1

5
.2

8
E

2
0
4
6

7
.1

7
E

2
0
5

4
.5

5
E+

0
1
6

3
.2

6
E+

0
0

9
.0

9
E2

0
2
6

1
.1

2
E2

0
3

8
.6

4E
+

0
06

9
.4

0
E
2

0
1

F1
0

8
.2

1
E+

0
0
6

7
.4

9
E2

0
1

1
.1

6
E
+

0
0
6

4
.7

8
E

2
0
1

2
.3

4
E+

0
1
6

7
.7

0
E+

0
0

8
.9

5
E+

0
1
6

4
.3

6
E+

0
0

1
.2

3E
+

0
06

3
.4

0
E
2

0
1

F1
0*

,
l=

1
3
.3

1
E+

0
0
6

8
.2

5
E2

0
1

1
.9

6
E+

0
0
6

3
.2

2
E2

0
1

8
.4

9
E+

0
1
6

9
.1

4
E+

0
0

1
.1

6
E
+

0
0
6

5
.0

9
E

2
0
1

8
.5

2E
+

0
06

7
.7

4
E
2

0
1

F1
0*

,
l=

5
4
.1

9
E+

0
0
6

3
.2

8
E2

0
1

1
.0

8
E
+

0
0
6

1
.0

7
E

2
0
1

5
.5

6
E+

0
1
6

8
.1

2
E+

0
0

8
.9

9
E+

0
0
6

2
.3

1
E2

0
1

1
.1

7E
+

0
06

3
.0

4
E
2

0
1

F1
0*

,
l=

2
0

7
.8

0
E+

0
0
6

4
.4

5
E2

0
1

1
.0

6
E
+

0
0
6

5
.5

1
E

2
0
1

8
.5

3
E+

0
1
6

7
.7

0
E+

0
0

6
.7

7
E+

0
0
6

1
.4

9
E2

0
1

1
.1

5E
+

0
06

7
.3

6
E
2

0
1

F1
0*

,
l=

5
0

2
.1

1
E+

0
0
6

5
.3

2
E2

0
1

1
.3

9
E
+

0
0
6

4
.3

7
E

2
0
1

8
.4

1
E+

0
1
6

9
.5

5
E+

0
0

5
.4

2
E+

0
0
6

7
.8

0
E2

0
1

1
.5

6E
+

0
06

6
.2

7
E
2

0
1

F1
1

4
.0

7
E+

0
1
6

1
.3

7
E+

0
0

7
.5

5
E+

0
0
6

2
.1

0
E2

0
1

5
.6

6
E+

0
2
6

6
.1

8
E+

0
1

5
.1

1
E+

0
1
6

3
.4

6
E+

0
0

1
.5

7
E
+

0
0
6

9
.8

8
E

2
0
1

F1
1*

,
l=

1
1
.5

7
E+

0
0
6

4
.6

7
E2

0
1

1
.1

5
E
+

0
0
6

4
.1

2
E

2
0
1

1
.8

9
E+

0
1
6

1
.1

9
E+

0
0

6
.4

8
E+

0
0
6

7
.1

9
E2

0
1

1
.5

9E
+

0
16

7
.0

4
E
+

0
0

F1
1*

,
l=

5
1
.3

7
E+

0
2
6

1
.8

5
E+

0
1

1
.0

5
E+

0
2
6

5
.6

4
E+

0
1

1
.9

1
E+

0
2
6

8
.0

4
E+

0
1

6
.3

0
E+

0
2
6

1
.2

2
E+

0
1

6
.4

7
E
+

0
1
6

4
.7

2
E
+

0
0

F1
1*

,
l=

2
0

1
.9

6
E+

0
3
6

6
.0

3
E+

0
2

3
.1

6
E+

0
3
6

1
.7

7
E+

0
2

1
.4

6
E+

0
4
6

9
.1

9
E+

0
2

4
.5

1
E+

0
4
6

2
.4

5
E+

0
3

2
.3

6
E
+

0
2
6

3
.1

9
E
+

0
1

F1
1*

,
l=

5
0

2
.1

1
E+

0
3
6

8
.8

3
E+

0
2

4
.3

5
E+

0
3
6

3
.4

7
E+

0
2

2
.2

9
E+

0
4
6

3
.4

8
E+

0
2

3
.7

1
E+

0
4
6

4
.3

9
E+

0
3

8
.4

5
E
+

0
2
6

3
.2

2
E
+

0
1

F1
2

7
.2

6
E+

0
2
6

3
.8

0
E+

0
0

5
.6

8
E

2
0
3
6

2
.1

9
E

2
0
4

3
.8

4
E+

0
3
6

4
.6

5
E+

0
2

7
.1

4
E2

0
1
6

3
.2

8
E2

0
2

9
.1

3E
2

0
3
6

7
.5

5
E2

0
4

F1
2*

,
l=

1
4
.5

2
E+

0
2
6

2
.1

1
E+

0
1

7
.8

6
E+

0
2
6

5
.3

9
E+

0
1

7
.9

1
E+

0
4
6

2
.4

4
E+

0
2

1
.1

9
E
+

0
0
6

7
.0

4
E

2
0
1

8
.6

2E
+

0
76

3
.1

2
E
+

0
6

F1
2*

,
l=

5
3
.7

2
E+

0
3
6

4
.3

6
E+

0
2

8
.4

7
E+

0
3
6

7
.5

8
E+

0
2

8
.2

6
E+

0
5
6

7
.6

1
E+

0
3

7
.0

0
E+

0
3
6

2
.3

6
E+

0
2

4
.2

5
E
+

0
3
6

7
.8

9
E
+

0
2

F1
2*

,
l=

2
0

5
.8

8
E+

0
3
6

1
.9

6
E+

0
1

4
.3

2
E+

0
0
6

6
.3

3
E2

0
1

8
.9

0
E+

0
5
6

4
.4

2
E+

0
3

6
.0

2
E+

0
3
6

5
.1

1
E+

0
1

2
.1

6
E

2
0
1
6

3
.2

8
E

2
0
2

F1
2*

,
l=

5
0

4
.4

5
E+

0
4
6

1
.2

2
E+

0
3

1
.0

6
E+

0
0
6

3
.5

0
E2

0
1

3
.7

4
E+

0
6
6

1
.5

6
E+

0
4

7
.4

2
E
+

0
2
6

4
.3

6
E+

0
1

4
.4

5
E

2
0
1
6

2
.3

5
E

2
0
2

F1
3

9
.6

5
E+

0
1
6

7
.4

7
E+

0
0

7
.8

4
E

2
0
3
6

7
.1

3
E

2
0
4

2
.3

5
E+

0
0
6

4
.1

7
E2

0
1

8
.4

7
E2

0
1
6

9
.0

0
E2

0
2

1
.2

3E
2

0
2
6

5
.3

1
E2

0
2

F1
3*

,
l=

1
3
.4

7
E+

0
1
6

5
.1

6
E+

0
0

4
.5

0
E+

0
1
6

7
.6

4
E+

0
0

9
.0

2
E+

0
0
6

1
.1

5
E2

0
1

1
.2

9
E+

0
0
6

7
.0

2
E2

0
1

2
.8

7
E

2
0
2
6

8
.0

9
E

2
0
3

F1
3*

,
l=

5
7
.7

8
E+

0
1
6

5
.8

4
E+

0
0

6
.3

2
E

2
0
3
6

1
.4

0
E

2
0
3

8
.9

4
E
+

0
0
6

6
.3

0
E2

0
1

7
.3

6
E2

0
1
6

2
.3

7
E2

0
2

4
.2

5E
2

0
2
6

3
.7

8
E2

0
3

F1
3*

,
l=

2
0

2
.3

6
E+

0
1
6

8
.9

6
E+

0
0

4
.5

5
E

2
0
2
6

2
.3

9
E

2
0
3

7
.9

8
E+

0
0
6

1
.6

6
E2

0
1

2
.4

8
E2

0
1
6

5
.5

1
E2

0
2

8
.9

1E
2

0
1
6

1
.5

9
E2

0
2

F1
3*

,
l=

5
0

3
.5

5
E+

0
1
6

7
.8

9
E+

0
0

7
.4

1
E

2
0
2
6

2
.3

5
E

2
0
3

7
.2

1
E+

0
0
6

4
.3

8
E2

0
1

3
.1

9
E2

0
1
6

4
.2

6
E2

0
2

9
.6

8E
2

0
1
6

3
.4

7
E2

0
2

F1
4

8
.9

6
E+

0
0
6

2
.4

7
E2

0
1

7
.6

4
E2

0
1
6

6
.3

8
E2

0
2

9
.7

4
E+

0
0
6

3
.2

5
E2

0
1

2
.4

6
E

2
0
1
6

7
.5

5
E

2
0
2

7
.8

5E
+

0
06

9
.6

2
E
2

0
1

F1
4*

,
l=

1
7
.8

9
E+

0
0
6

5
.3

4
E2

0
1

2
.0

1
E
+

0
0
6

8
.9

5
E

2
0
1

4
.2

6
E+

0
0
6

8
.5

1
E2

0
1

3
.5

9
E+

0
0
6

6
.3

0
E2

0
1

3
.7

0E
+

0
06

4
.6

6
E
2

0
1

F1
4*

,
l=

5
2
.3

5
E+

0
0
6

7
.8

9
E2

0
1

2
.0

4
E+

0
0
6

7
.3

0
E2

0
1

3
.2

2
E+

0
0
6

7
.8

4
E2

0
1

1
.1

1
E
+

0
0
6

4
.1

8
E

2
0
1

6
.4

2E
+

0
06

1
.1

9
E
2

0
1

F1
4*

,
l=

2
0

3
.2

4
E+

0
0
6

8
.7

4
E2

0
1

6
.4

2
E+

0
0
6

7
.1

9
E2

0
1

1
.2

5
E+

0
0
6

7
.9

9
E2

0
1

1
.0

9
E
+

0
0
6

7
.6

9
E

2
0
1

8
.4

5E
+

0
06

2
.3

6
E
2

0
1

F1
4*

,
l=

5
0

9
.3

2
E+

0
0
6

2
.5

8
E2

0
1

5
.0

2
E+

0
0
6

4
.7

7
E2

0
1

6
.1

4
E+

0
0
6

2
.3

8
E2

0
1

1
.2

6
E
+

0
0
6

3
.0

1
E

2
0
1

7
.8

0E
+

0
06

5
.6

2
E
2

0
1

F1
5

8
.1

7
E+

0
2
6

9
.3

0
E+

0
1

9
.1

7
E+

0
2
6

9
.3

0
E+

0
1

7
.6

5
E+

0
2
6

4
.1

6
E+

0
1

1
.0

1
E
+

0
1
6

4
.3

2
E
+

0
0

7
.5

4E
+

0
16

3
.2

5
E
+

0
0

F1
5*

,
l=

1
1
.8

3
E+

0
2
6

3
.0

0
E+

0
1

1
.3

6
E+

0
2
6

7
.1

8
E+

0
1

2
.3

6
E+

0
2
6

8
.9

4
E+

0
1

3
.2

8
E
+

0
1
6

3
.0

0
E
+

0
0

7
.8

2E
+

0
26

1
.6

6
E
+

0
1

F1
5*

,
l=

5
5
.4

5
E+

0
2
6

2
.7

4
E+

0
1

7
.4

3
E+

0
2
6

8
.0

4
E+

0
1

1
.2

3
E+

0
2
6

6
.3

7
E+

0
1

2
.6

6
E
+

0
1
6

2
.7

4
E
+

0
0

6
.4

7E
+

0
16

8
.1

9
E
+

0
0

F1
5*

,
l=

2
0

9
.6

5
E+

0
2
6

7
.5

3
E+

0
1

9
.0

6
E+

0
2
6

7
.4

4
E+

0
1

7
.8

9
E+

0
2
6

2
.3

0
E+

0
1

1
.3

2
E
+

0
1
6

7
.5

3
E
+

0
0

2
.3

0E
+

0
16

1
.7

4
E
+

0
0

F1
5*

,
l=

5
0

9
.6

2
E+

0
2
6

1
.6

6
E+

0
1

1
.1

2
E+

0
2
6

4
.5

2
E+

0
1

1
.1

9
E+

0
2
6

5
.9

9
E+

0
1

1
.6

2
E
+

0
1
6

1
.6

6
E
+

0
0

5
.6

0E
+

0
16

3
.0

5
E
+

0
0

F1
6

1
.1

2
E+

0
1
6

5
.2

9
E+

0
0

7
.7

1
E
+

0
0
6

1
.1

2
E
+

0
0

4
.4

1
E+

0
2
6

8
.5

4
E+

0
1

4
.4

1
E+

0
2
6

3
.2

2
E+

0
1

9
.6

0E
+

0
26

1
.1

5
E
+

0
1

F1
6*

,
l=

1
4
.3

7
E+

0
1
6

2
.1

6
E+

0
0

2
.3

4
E
+

0
0
6

4
.5

0
E

2
0
1

7
.5

3
E+

0
2
6

3
.2

6
E+

0
1

3
.5

8
E+

0
2
6

7
.3

6
E+

0
1

4
.7

2E
+

0
26

3
.4

1
E
+

0
1

F1
6*

,
l=

5
3
.3

5
E+

0
1
6

7
.3

6
E+

0
0

1
.0

6
E
+

0
1
6

3
.1

6
E
+

0
0

9
.7

0
E+

0
2
6

4
.1

5
E+

0
1

2
.1

3
E+

0
2
6

1
.1

8
E+

0
1

2
.6

3E
+

0
26

1
.7

4
E
+

0
1

F1
6*

,
l=

2
0

5
.1

1
E+

0
1
6

2
.8

9
E+

0
0

1
.1

5
E
+

0
1
6

7
.6

5
E
+

0
0

7
.8

8
E+

0
2
6

7
.2

3
E+

0
1

4
.3

9
E+

0
2
6

2
.9

4
E+

0
1

9
.1

2E
+

0
26

7
.6

5
E
+

0
1

F1
6*

,
l=

5
0

7
.8

7
E+

0
1
6

1
.2

3
E+

0
0

1
.3

6
E
+

0
1
6

4
.2

2
E
+

0
0

9
.6

1
E+

0
2
6

4
.3

8
E+

0
1

2
.7

4
E+

0
2
6

5
.2

0
E+

0
1

7
.3

0E
+

0
26

5
.9

9
E
+

0
1

A
b
b
re

vi
at

io
ns

as
in

Ta
b
le

2
.

198 Transactions of the Institute of Measurement and Control 37(2)

T
a
b

le
4
.

Si
m

u
la

ti
o
n

re
su

lt
s

fo
r

F1
7
–
F2

5
.

Fu
nc

ti
o
n

D
E

Sa
D

E
P
SO

C
P
SO

B
B
O

F1
7

9
.6

2
E+

0
1
6

1
.1

7
E+

0
0

1
.2

9
E
+

0
1
6

4
.5

0
E
+

0
0

7
.9

8
E+

0
2
6

2
.6

4
E+

0
1

3
.3

8
E+

0
1
6

7
.2

2
E+

0
0

7
.3

4E
+

0
26

2
.1

9
E
+

0
1

F1
7*

,
l=

1
7
.8

6
E+

0
2
6

4
.3

5
E+

0
1

3
.1

4
E
+

0
1
6

5
.9

2
E
+

0
0

3
.2

7
E+

0
3
6

5
.1

1
E+

0
2

7
.3

5
E+

0
2
6

2
.1

7
E+

0
1

5
.3

6E
+

0
36

4
.2

8
E
+

0
2

F1
7*

,
l=

5
7
.0

1
E+

0
1
6

5
.6

4
E+

0
0

1
.3

2
E
+

0
1
6

4
.2

6
E
+

0
0

7
.6

5
E+

0
2
6

7
.6

1
E+

0
1

2
.7

4
E+

0
2
6

1
.2

4
E+

0
1

2
.1

8E
+

0
26

7
.6

0
E
+

0
1

F1
7*

,
l=

2
0

3
.2

2
E+

0
1
6

1
.2

0
E+

0
0

2
.7

1
E
+

0
1
6

5
.3

9
E
+

0
0

2
.0

1
E+

0
2
6

1
.9

9
E+

0
1

3
.4

7
E+

0
2
6

7
.6

0
E+

0
1

5
.3

4E
+

0
26

4
.7

8
E
+

0
1

F1
7*

,
l=

5
0

7
.1

6
E+

0
1
6

4
.4

2
E+

0
0

2
.6

5
E
+

0
1
6

1
.9

8
E
+

0
0

8
.3

3
E+

0
2
6

4
.2

5
E+

0
1

5
.5

2
E+

0
2
6

4
.3

1
E+

0
1

9
.0

7E
+

0
26

3
.2

6
E
+

0
1

F1
8

9
.2

8
E+

0
2
6

4
.3

6
E+

0
1

7
.6

5
E
+

0
0
6

2
.2

8
E
+

0
0

4
.2

1
E+

0
1
6

7
.6

5
E+

0
0

8
.9

6
E+

0
0
6

1
.1

6
E+

0
0

7
.3

6E
+

0
26

9
.6

4
E
+

0
1

F1
8*

,
l=

1
5
.4

4
E+

0
3
6

3
.1

7
E+

0
2

2
.4

7E
+

0
36

5
.4

4
E
+

0
2

9
.6

3
E
+

0
2
6

7
.1

4
E
+

0
1

2
.7

4
E+

0
3
6

1
.2

9
E+

0
2

5
.2

8E
+

0
36

7
.7

8
E
+

0
2

F1
8*

,
l=

5
7
.8

9
E+

0
2
6

4
.2

5
E+

0
1

9
.1

9
E
+

0
0
6

6
.3

9
E
+

0
0

2
.3

5
E+

0
1
6

4
.4

2
E+

0
0

3
.9

6
E+

0
2
6

7
.1

4
E+

0
1

3
.4

5E
+

0
26

4
.1

1
E
+

0
1

F1
8*

,
l=

2
0

7
.0

3
E+

0
3
6

5
.5

4
E+

0
2

7
.3

6
E
+

0
1
6

2
.1

7
E
+

0
0

3
.2

7
E+

0
2
6

1
.2

8
E+

0
1

6
.3

3
E+

0
3
6

4
.1

0
E+

0
2

1
.2

9E
+

0
36

3
.7

4
E
+

0
2

F1
8*

,
l=

5
0

2
.2

6
E+

0
2
6

4
.1

1
E+

0
1

1
.3

3
E
+

0
1
6

1
.1

2
E
+

0
0

5
.3

4
E+

0
1
6

6
.6

2
E+

0
0

9
.6

4
E+

0
2
6

7
.3

5
E+

0
1

5
.5

5E
+

0
26

4
.3

1
E
+

0
1

F1
9

7
.6

9
E+

0
2
6

7
.4

1
E+

0
1

3
.8

7E
+

0
26

1
.0

4
E
+

0
1

4
.2

5
E+

0
2
6

3
.6

3
E+

0
1

8
.5

0
E+

0
2
6

7
.4

1
E+

0
1

9
.9

0
E
+

0
1
6

4
.4

7
E
+

0
0

F1
9*

,
l=

1
9
.3

4
E+

0
2
6

5
.2

1
E+

0
1

4
.2

2
E
+

0
2
6

4
.4

5
E
+

0
1

1
.1

7
E+

0
2
6

4
.5

8
E+

0
1

7
.4

1
E+

0
2
6

5
.2

1
E+

0
1

2
.7

9E
+

0
26

7
.2

8
E
+

0
1

F1
9*

,
l=

5
4
.4

9
E+

0
2
6

1
.2

4
E+

0
1

4
.2

9E
+

0
26

1
.0

7
E
+

0
1

9
.6

4
E+

0
2
6

5
.4

7
E+

0
1

9
.6

4
E+

0
2
6

9
.6

3
E+

0
1

1
.8

6
E
+

0
2
6

7
.4

2
E
+

0
1

F1
9*

,
l=

2
0

2
.2

6
E+

0
2
6

7
.6

2
E+

0
1

7
.8

6E
+

0
26

3
.7

8
E
+

0
1

1
.2

5
E+

0
2
6

4
.8

1
E+

0
1

7
.3

2
E+

0
2
6

1
.7

0
E+

0
1

7
.7

0
E
+

0
1
6

5
.3

8
E
+

0
0

F1
9*

,
l=

5
0

7
.6

5
E+

0
2
6

7
.8

6
E+

0
1

5
.3

9E
+

0
26

1
.1

2
E
+

0
1

2
.8

9
E+

0
2
6

5
.6

2
E+

0
1

6
.3

0
E+

0
2
6

4
.1

4
E+

0
1

9
.6

2
E
+

0
1
6

3
.2

6
E
+

0
0

F2
0

4
.4

1
E+

0
2
6

3
.7

6
E+

0
1

2
.3

5
E
+

0
1
6

5
.3

9
E
+

0
0

8
.6

2
E+

0
2
6

1
.1

9
E+

0
1

9
.9

8
E+

0
1
6

4
.1

0
E+

0
0

8
.2

7E
+

0
16

3
.1

9
E
+

0
0

F2
0*

,
l=

1
8
.9

4
E+

0
2
6

4
.1

1
E+

0
1

4
.1

1
E
+

0
1
6

7
.4

8
E
+

0
0

6
.5

8
E+

0
3
6

4
.2

7
E+

0
2

9
.7

8
E+

0
2
6

2
.3

3
E+

0
1

7
.6

0E
+

0
26

9
.6

4
E
+

0
1

F2
0*

,
l=

5
9
.6

8
E+

0
2
6

4
.4

9
E+

0
1

2
.5

7
E
+

0
1
6

2
.4

5
E
+

0
0

7
.3

5
E+

0
3
6

3
.2

5
E+

0
2

7
.2

4
E+

0
2
6

7
.5

6
E+

0
1

1
.1

7E
+

0
26

2
.6

4
E
+

0
1

F2
0*

,
l=

2
0

3
.2

5
E+

0
2
6

1
.0

8
E+

0
1

7
.7

2
E
+

0
1
6

7
.3

9
E
+

0
0

7
.8

9
E+

0
3
6

2
.3

6
E+

0
2

8
.2

9
E+

0
2
6

7
.8

4
E+

0
1

9
.6

0E
+

0
26

8
.8

5
E
+

0
1

F2
0*

,
l=

5
0

5
.5

3
E+

0
2
6

2
.2

6
E+

0
1

4
.6

3
E
+

0
1
6

6
.3

4
E
+

0
0

1
.8

0
E+

0
3
6

7
.9

8
E+

0
2

9
.6

6
E+

0
2
6

2
.2

8
E+

0
1

7
.7

3E
+

0
26

1
.2

2
E
+

0
1

F2
1

7
.6

5
E+

0
2
6

4
.3

3
E+

0
1

8
.1

7E
+

0
26

5
.6

4
E
+

0
1

7
.0

1
E+

0
2
6

8
.6

5
E+

0
1

1
.5

5
E
+

0
2
6

2
.6

4
E
+

0
1

9
.6

0E
+

0
26

1
.7

7
E
+

0
1

F2
1*

,
l=

1
9
.0

7
E+

0
2
6

3
.3

9
E+

0
1

5
.3

6E
+

0
26

1
.9

8
E
+

0
1

4
.3

4
E
+

0
2
6

2
.2

9
E
+

0
1

7
.5

0
E+

0
2
6

7
.4

5
E+

0
1

8
.5

9E
+

0
26

3
.2

1
E
+

0
1

F2
1*

,
l=

5
4
.1

8
E+

0
2
6

7
.4

5
E+

0
1

4
.3

8E
+

0
26

7
.2

4
E
+

0
1

7
.8

5
E+

0
2
6

1
.9

9
E+

0
1

7
.8

9
E
+

0
1
6

6
.3

0
E
+

0
0

7
.8

9E
+

0
26

2
.3

7
E
+

0
1

F2
1*

,
l=

2
0

8
.6

7
E+

0
2
6

1
.1

2
E+

0
1

7
.7

4E
+

0
26

5
.5

9
E
+

0
1

7
.1

4
E+

0
2
6

3
.2

6
E+

0
1

1
.1

4
E
+

0
1
6

9
.7

4
E
+

0
0

4
.4

5E
+

0
26

7
.8

5
E
+

0
1

F2
1*

,
l=

5
0

7
.0

5
E+

0
2
6

7
.8

2
E+

0
1

1
.1

5E
+

0
26

6
.6

3
E
+

0
1

4
.7

8
E+

0
2
6

3
.6

4
E+

0
1

2
.3

0
E
+

0
1
6

5
.4

8
E
+

0
0

1
.0

4E
+

0
26

4
.3

3
E
+

0
1

F2
2

1
.2

3
E+

0
1
6

8
.9

6
E
+

0
0

8
.6

6
E
+

0
0
6

4
.2

5
E
+

0
0

9
.2

5
E+

0
1
6

7
.8

4
E+

0
0

8
.8

2
E+

0
1
6

3
.2

8
E+

0
0

9
.2

5E
+

0
06

3
.6

4
E
+

0
0

F2
2*

,
l=

1
3
.2

5
E+

0
1
6

9
.4

5
E+

0
0

7
.1

7
E
+

0
0
6

2
.3

4
E
+

0
0

7
.8

4
E+

0
1
6

4
.5

6
E+

0
0

4
.7

9
E+

0
1
6

5
.1

6
E+

0
0

7
.8

9E
+

0
16

2
.1

7
E
+

0
0

F2
2*

,
l=

5
4
.1

8
E+

0
1
6

3
.2

5
E+

0
0

1
.5

4
E
+

0
1
6

7
.8

9
E
+

0
0

3
.2

6
E+

0
1
6

2
.2

6
E+

0
0

2
.3

5
E+

0
1
6

7
.7

5
E+

0
0

4
.5

6E
+

0
16

6
.3

4
E
+

0
0

F2
2*

,
l=

2
0

7
.6

5
E+

0
1
6

4
.7

2
E+

0
0

5
.6

3
E
+

0
1
6

1
.1

6
E
+

0
0

7
.8

9
E+

0
1
6

5
.9

6
E+

0
0

9
.0

0
E+

0
1
6

1
.1

2
E+

0
0

7
.8

2E
+

0
16

1
.1

5
E
+

0
0

F2
2*

,
l=

5
0

1
.3

9
E+

0
1
6

1
.1

7
E+

0
0

1
.1

4
E
+

0
1
6

5
.3

1
E
+

0
0

5
.5

6
E+

0
1
6

7
.2

1
E+

0
0

7
.4

8
E+

0
1
6

4
.3

5
E+

0
0

6
.3

2E
+

0
16

4
.3

6
E
+

0
0

F2
3

7
.7

8
E+

0
2
6

7
.8

4
E+

0
1

1
.8

6E
+

0
26

7
.1

4
E
+

0
1

7
.8

4
E+

0
2
6

7
.4

5
E+

0
1

8
.8

6
E+

0
2
6

5
.3

0
E+

0
1

9
.6

3
E
+

0
1
6

4
.4

5
E
+

0
0

F2
3*

,
l=

1
1
.2

5
E+

0
2
6

1
.1

8
E+

0
1

1
.0

5
E
+

0
2
6

4
.2

9
E
+

0
1

9
.3

6
E+

0
3
6

8
.1

2
E+

0
2

2
.3

4
E+

0
2
6

1
.9

9
E+

0
1

2
.3

9E
+

0
26

7
.7

8
E
+

0
1

F2
3*

,
l=

5
4
.2

6
E+

0
3
6

2
.4

7
E+

0
2

3
.1

6E
+

0
36

6
.6

3
E
+

0
2

7
.1

2
E+

0
3
6

7
.8

9
E+

0
2

3
.4

8
E+

0
3
6

3
.2

8
E+

0
2

2
.0

5
E
+

0
2
6

4
.7

3
E
+

0
1

F2
3*

,
l=

2
0

5
.7

4
E+

0
3
6

5
.4

6
E+

0
2

7
.4

5E
+

0
26

1
.1

5
E
+

0
1

7
.4

6
E+

0
3
6

9
.2

1
E+

0
2

7
.7

9
E+

0
2
6

9
.6

5
E+

0
1

8
.2

5
E
+

0
1
6

3
.1

4
E
+

0
0

F2
3*

,
l=

5
0

3
.2

5
E+

0
3
6

3
.2

8
E+

0
2

6
.3

3E
+

0
26

3
.1

7
E
+

0
1

2
.3

6
E+

0
3
6

7
.4

8
E+

0
2

6
.2

5
E+

0
2
6

5
.1

7
E+

0
1

1
.2

9
E
+

0
1
6

3
.0

7
E
+

0
0

F2
4

9
.6

5
E+

0
2
6

3
.2

8
E+

0
1

1
.3

6
E
+

0
2
6

7
.1

4
E
+

0
0

8
.5

6
E+

0
2
6

3
.2

1
E+

0
1

3
.1

6
E+

0
2
6

2
.4

4
E+

0
1

8
.2

4E
+

0
36

4
.3

1
E
+

0
2

F2
4*

,
l=

1
4
.1

7
E+

0
2
6

7
.8

5
E+

0
1

5
.4

2E
+

0
26

3
.1

6
E
+

0
1

9
.1

9
E+

0
2
6

5
.7

9
E+

0
1

1
.5

5
E
+

0
2
6

1
.1

6
E
+

0
1

7
.8

9E
+

0
36

2
.3

6
E
+

0
2

F2
4*

,
l=

5
2
.3

6
E+

0
2
6

2
.3

6
E+

0
1

2
.1

7
E
+

0
2
6

7
.7

0
E
+

0
1

3
.2

5
E+

0
2
6

6
.5

5
E+

0
1

9
.3

6
E+

0
2
6

4
.2

8
E+

0
1

4
.5

7E
+

0
36

1
.4

4
E
+

0
2

F2
4*

,
l=

2
0

5
.4

4
E+

0
2
6

4
.2

5
E+

0
1

3
.2

9
E
+

0
2
6

2
.2

9
E
+

0
1

4
.2

8
E+

0
2
6

7
.1

3
E+

0
1

7
.1

4
E+

0
2
6

7
.7

7
E+

0
1

8
.9

6E
+

0
36

8
.6

5
E
+

0
2

F2
4*

,
l=

5
0

1
.2

7
E+

0
2
6

3
.2

7
E+

0
1

1
.0

3
E
+

0
2
6

8
.3

3
E
+

0
1

6
.4

4
E+

0
2
6

6
.2

1
E+

0
1

9
.6

3
E+

0
2
6

9
.6

4
E+

0
1

1
.1

2E
+

0
36

4
.2

3
E
+

0
2

F2
5

9
.6

0
E+

0
2
6

5
.3

2
E+

0
1

7
.8

9
E
+

0
1
6

7
.4

1
E
+

0
0

9
.6

0
E+

0
2
6

9
.5

7
E+

0
1

7
.1

9
E+

0
2
6

6
.6

9
E+

0
1

6
.3

2E
+

0
26

1
.2

8
E
+

0
1

F2
5*

,
l=

1
7
.8

4
E+

0
2
6

1
.1

2
E+

0
1

2
.5

1
E
+

0
2
6

2
.3

5
E
+

0
1

1
.3

6
E+

0
3
6

3
.2

8
E+

0
1

6
.4

5
E+

0
2
6

2
.5

7
E+

0
1

4
.3

7E
+

0
26

5
.3

6
E
+

0
1

F2
5*

,
l=

5
4
.5

8
E+

0
3
6

2
.3

7
E+

0
2

3
.7

4
E
+

0
2
6

7
.4

6
E
+

0
1

7
.8

9
E+

0
3
6

6
.2

1
E+

0
2

7
.3

6
E+

0
2
6

1
.1

4
E+

0
1

7
.5

8E
+

0
26

9
.6

2
E
+

0
1

F2
5*

,
l=

2
0

9
.6

5
E+

0
3
6

4
.2

5
E+

0
2

1
.2

2
E
+

0
2
6

9
.0

3
E
+

0
1

5
.2

4
E+

0
3
6

9
.8

5
E+

0
2

8
.6

1
E+

0
2
6

6
.7

8
E+

0
1

1
.7

4E
+

0
26

3
.5

1
E
+

0
1

F2
5*

,
l=

5
0

3
.8

7
E+

0
3
6

1
.4

6
E+

0
2

4
.5

8
E
+

0
2
6

7
.3

1
E
+

0
1

4
.1

1
E+

0
3
6

2
.2

6
E+

0
2

4
.6

4
E+

0
2
6

9
.1

5
E
+

0
1

9
.4

4E
+

0
26

3
.2

8
E
+

0
1

A
b
b
re

vi
at

io
ns

as
in

Ta
b
le

2
.

Ma et al. 199

Table 5. Wilcoxon test results.

Function

BBO vs.

DE

BBO vs.

SaDE

BBO vs.

PSO

BBO vs.

CPSO

Function BBO vs.

DE

BBO vs.

SaDE

BBO vs.

PSO

BBO vs.

CPSO

F1 X-o X-o X-o X-o F14 2 o-X 2 o-X

F1*, l=1 o-X o-X X-o o-X F14*, l=1 2 2 2 2

F1*, l=5 X-o X-o X-o X-o F14*, l=5 2 2 2 2

F1*, l=20 X-o X-o X-o X-o F14*, l=20 2 2 2 2

F1*, l=50 X-o X-o X-o X-o F14*, l=50 2 2 2 2

F2 o-X o-X X-o X-o F15 X-o X-o X-o 2

F2*, l=1 o-X o-X X-o 2 F15*, l=1 2 2 2 o-X

F2*, l=5 2 o-X X-o 2 F15*, l=5 X-o X-o X-o 2

F2*, l=20 2 o-X X-o 2 F15*, l=20 X-o X-o X-o 2

F2*, l=50 2 o-X X-o 2 F15*, l=50 X-o X-o X-o 2

F3 o-X o-X X-o o-X F16 o-X o-X 2 2

F3*, l=1 o-X o-X 2 o-X F16*, l=1 o-X o-X 2 2

F3*, l=5 2 o-X 2 2 F16*, l=5 o-X o-X 2 2

F3*, l=20 2 o-X 2 o-X F16*, l=20 o-X o-X 2 2

F3*, l=50 2 o-X 2 o-X F16*, l=50 o-X o-X 2 2

F4 2 2 X-o 2 F17 o-X o-X 2 o-X

F4*, l=1 o-X o-X 2 o-X F17*, l=1 o-X o-X 2 o-X

F4*, l=5 2 o-X 2 o-X F17*, l=5 o-X o-X 2 2

F4*, l=20 2 2 2 o-X F17*, l=20 o-X o-X 2 2

F4*, l=50 2 2 2 o-X F17*, l=50 o-X o-X 2 2

F5 o-X o-X X-o X-o F18 2 o-X o-X o-X

F5*, l=1 o-X o-X 2 o-X F18*, l=1 2 2 o-X 2

F5*, l=5 2 o-X X-o 2 F18*, l=5 2 o-X o-X 2

F5*, l=20 2 o-X X-o 2 F18*, l=20 2 o-X o-X 2

F5*, l=50 2 o-X 2 o-X F18*, l=50 2 o-X o-X 2

F6 X-o X-o X-o X-o F19 X-o X-o X-o X-o

F6*, l=1 o-X o-X 2 o-X F19*, l=1 2 2 2 2

F6*, l=5 2 X-o X-o X-o F19*, l=5 2 2 2 2

F6*, l=20 2 X-o X-o X-o F19*, l=20 X-o X-o X-o X-o

F6*, l=50 X-o X-o X-o X-o F19*, l=50 X-o X-o X-o X-o

F7 X-o X-o 2 X-o F20 X-o 2 X-o 2

F7*, l=1 2 o-X o-X o-X F20*, l=1 2 o-X X-o 2

F7*, l=5 2 o-X o-X o-X F20*, l=5 2 o-X X-o 2

F7*, l=20 2 o-X o-X o-X F20*, l=20 2 o-X X-o 2

F7*, l=50 2 o-X o-X o-X F20*, l=50 2 o-X X-o 2

F8 X-o 2 X-o o-X F21 2 2 2 2

F8*, l=1 2 X-o X-o X-o F21*, l=1 2 2 2 2

F8*, l=5 2 X-o X-o X-o F21*, l=5 2 2 2 o-X

F8*, l=20 X-o X-o X-o X-o F21*, l=20 2 2 2 o-X

F8*, l=50 X-o X-o X-o X-o F21*, l=50 2 2 2 o-X

F9 X-o o-X X-o X-o F22 X-o 2 X-o X-o

F9*, l=1 2 o-X 2 o-X F22*, l=1 2 o-X 2 2

F9*, l=5 2 o-X X-o o-X F22*, l=5 2 2 2 2

F9*, l=20 2 o-X 2 o-X F22*, l=20 2 2 2 2

F9*, l=50 2 o-X 2 o-X F22*, l=50 2 2 2 2

F10 2 2 2 X-o F23 X-o X-o X-o X-o

F10*, l=1 2 2 2 2 F23*, l=1 2 2 X-o 2

F10*, l=5 2 2 2 2 F23*, l=5 2 X-o 2 X-o

F10*, l=20 2 2 2 2 F23*, l=20 X-o X-o X-o X-o

F10*, l=50 2 2 2 2 F23*, l=50 X-o X-o X-o X-o

F11 X-o 2 X-o X-o F24 o-X o-X o-X o-X

F11*, l=1 o-X o-X 2 2 F24*, l=1 o-X o-X o-X o-X

F11*, l=5 2 X-o X-o X-o F24*, l=5 o-X o-X o-X o-X

F11*, l=20 X-o X-o X-o X-o F24*, l=20 o-X o-X o-X o-X

F11*, l=50 X-o X-o X-o X-o F24*, l=50 o-X o-X o-X o-X

F12 X-o 2 X-o X-o F25 2 o-X 2 2

F12*, l=1 o-X 2 X-o o-X F25*, l=1 2 2 X-o 2

F12*, l=5 2 X-o X-o 2 F25*, l=5 X-o 2 X-o 2

F12*, l=20 X-o X-o X-o X-o F25*, l=20 X-o 2 X-o 2

(continued)

200 Transactions of the Institute of Measurement and Control 37(2)

� There are 70 statistically significant differences

between CPSO and BBO, including:

8 35 groups of data for which BBO is better;

8 35 groups of data for which CPSO is better.

The statistical results show that for the noiseless and noisy

benchmark functions, SaDE performs best, BBO and CPSO

perform second best, DE performs fourth best, and PSO per-

forms worst. The superior performance of SaDE is apparently

due to its self-adaptive nature. This implies that a similar self-

adaptation strategy could also significantly improve perfor-

mance in PSO and BBO.

Comparisons with Kalman filter-based BBO (KBBO)

To illustrate the performance of BBO further combined

with re-sampling, we compare it with Kalman filter-based

BBO (Du, 2009), which is called KBBO. We use l=5 fitness

re-samples for BBO with re-sampling because it offers good

performance and uses a relatively small number of fitness

samples. The parameters used in these two BBO algorithms

are the same as those described in the previous section. The

number of total fitness evaluations is 100,000 and all func-

tions are optimized over 25 independent runs. We use the

same set of initial random populations to evaluate these two

BBO algorithms. The results of solving the 25 noisy bench-

mark functions are given in Table 6.
Table 6 shows that for noisy benchmark functions, BBO

combined with re-sampling performs the best on 12 functions,

and KBBO performs the best on the other 13 functions. This

result shows that BBO with re-sampling achieves almost the

same performance as KBBO for noisy optimization problems.

The average computational times of these two BBO algo-

rithms are shown in the last row of Table 6. We see that the

average computational time of BBO with re-sampling is much

lower than that of KBBO.
Table 7 shows the results of Wilcoxon tests between BBO

with re-sampling, and KBBO. Out of 25 groups of data, we

find that there are 19 statistically significant differences

between the two algorithms, including nine groups of data for

which BBO is better and 10 groups of data for which KBBO

is better.

We make two general conclusions from these results. First,

both BBO combined with re-sampling, and KBBO, alleviate

the effects of noise for the benchmark functions that we stud-

ied, but a Kalman filter is an optimal estimator for the states

of a linear dynamic system, so KBBO may be a better method

if the model of the noise’s effect on the fitness values is well

known. However, the Kalman filter requires multiple tuning

parameters (Simon, 2006), and so KBBO may be difficult to

tune. A poorly tuned Kalman filter may give misleading

Table 6. Comparisons of simulation results for biogeography-based

optimization (BBO) with the number of fitness re-samples l=5, and BBO

using the Kalman filter (KBBO).

Function KBBO Re-sampled BBO with l=5

F1 5.27E20261.15E203 7.48E20762.26E208

F2 9.54E20565.56E206 9.34E20267.25E203

F3 3.27E20364.36E204 7.52E+0163.39E+00

F4 9.00E20161.25E202 4.58E+0067.86E201

F5 7.58E+0263.24E+01 1.23E+0164.11E+00

F6 9.46E20663.15E207 8.27E20661.25E207

F7 4.26E20166.32E202 5.36E20367.83E204

F8 1.74E+0263.28E+01 1.02E+0062.38E201

F9 9.64E20461.19E205 9.65E20167.14E202

F10 5.63E20262.58E203 8.03E+0061.24E201

F11 7.81E20264.56E203 9.07E20265.44E203

F12 3.38E+0367.24E+02 7.58E+0363.16E+02

F13 8.63E20462.87E205 7.78E20265.36E203

F14 4.27E20166.35E202 3.02E+0065.11E201

F15 9.36E+0162.40E+00 9.25E+0162.78E+00

F16 7.89E+0265.59E+01 2.14E+0264.37E+01

F17 3.27E+0261.24E+01 6.47E+0265.32E+01

F18 7.89E+0264.28E+01 8.21E+0266.35E+01

F19 9.00E+0164.15E+00 8.34E+0167.78E+00

F20 7.23E+0265.31E+01 3.20E+0268.60E+01

F21 7.80E+0264.51E+01 7.64E+0265.32E+01

F22 3.25E+0161.17E+00 7.78E+164.28E+00

F23 7.65E+0164.32E+00 9.61E+0165.33E+00

F24 6.10E+0369.22E+02 1.02E+0367.20E+02

F25 4.25E+0264.10E+01 6.34E+0269.60E+01

CPU time 6.22 4.53

Here [a6b] indicates the mean and corresponding standard deviations

of the error values. The last row shows the average computational time

in minutes. The best performance is in bold font in each row.

Table 5. Continued

Function

BBO vs.

DE

BBO vs.

SaDE

BBO vs.

PSO

BBO vs.

CPSO

Function BBO vs.

DE

BBO vs.

SaDE

BBO vs.

PSO

BBO vs.

CPSO

F12*, l=50 X-o X-o X-o X-o F25*, l=50 X-o 2 X-o 2

F13 X-o o-X X-o X-o Total 37, 26 31, 59 61, 14 35, 35

F13*, l=1 X-o X-o X-o X-o

F13*, l=5 X-o o-X X-o X-o

F13*, l=20 X-o o-X X-o 2

F13*, l=50 X-o o-X X-o 2

Abbreviations as in Table 2. ‘X-o’ shows that the left algorithm is significantly better than the right one, and ‘o-X’ shows that the right algorithm is

significantly better than the left one. The ‘Total’ row at the end of the table shows the number of times BBO outperforms DE, SaDE, PSO, CPSO,

and vice versa.

Ma et al. 201

estimation results. Second, BBO combined with re-sampling is
faster than KBBO due to the computational complexity of the
Kalman filter.

Conclusion

We investigated the effect of fitness function noise on BBO
performance using a Markov model, and we used re-sampling

to alleviate the effect of random noise on the fitness function
evaluations of numerical benchmark functions. Analysis
showed the amount by which migration between candidate
solutions, which is the most critical operation of BBO, is cor-
rupted by fitness function evaluation noise. Analysis also
showed that the effect of noise is alleviated by high mutation
rates, although high mutation rates might themselves be detri-
mental to BBO performance. The analysis was confirmed

with an example using a BBO Markov model.
We used re-sampling in BBO and other EAs to deal with

random noise. We also compared BBO with re-sampling, and
BBO augmented with Kalman filtering. Our numerical simula-
tions showed the following: 1) BBO is a powerful EA for noise-
less benchmark functions, but fitness function evaluation noise
is indeed a problem for BBO; 2) SaDE performs best on noisy
optimization problems, BBO and CPSO perform second best,

DE performs third best, and PSO performs worst; 3) BBO with
re-sampling achieves the same optimization performance as
KBBO, but uses less computational time; 4) although re-
sampling is simple, it can greatly improve the performance of
BBO and other EAs in noisy environments. MATLAB� code
for the algorithms in this paper can be downloaded from
http://academic.csuohio.edu/simond/bbo/noisy.

This paper focused on the fitness of candidate solutions

contaminated by additive, normally distributed noise. For
future work, there are several important directions. First, in
many real-world applications, different types of fitness func-
tion noise can be encountered, so it is of interest to combine
BBO with re-sampling to address other types of fitness func-
tion noise. Furthermore, other types of noise problems
(besides fitness function noise) can arise in optimization. For

example, in distributed optimization, some nodes might tem-
porarily drop out of the algorithm due to communication

glitches; or during experimental optimization, some para-

meters might be corrupted during fitness function evaluation.

Future research could explore the effects of these and other

types of noise on EA performance.
The second important direction for future work is to

explore the optimization performance of BBO combined with

other noise-handling methods, e.g. dynamic re-sampling,

which uses different re-sampling rates at different points in

the search domain. The third important direction for future

work is to investigate the optimization ability of other BBO

variations on noisy problems. The fourth direction for future

work is to develop hybrid BBO algorithms for noisy problems

(i.e. BBO combined with other optimization algorithms).

Acknowledgements

The comments of the anonymous reviewers were helpful in
improving this paper from its original version.

Conflict of interest

The authors declare that there is no conflict of interest.

Funding

This material is based upon work supported by the National
Science Foundation under grant number 0826124, the
National Natural Science Foundation of China under grant
numbers 61305078, 61074032 and 61179041 and the Shaoxing
City Public Technology Applied Research Project under
grant number 2013B70004.

References

Al-Rifaie MM and Blackwell T (2012) Bare bones particle swarms

with jumps. Lecture Notes in Computer Science 7461: 49–60.

Arnold DV and Beyer HG (2003) On the effects of outliers on evolu-

tionary optimization. Intelligent Data Engineering and Automated

Learning. Berlin: Springer, pp. 151–160.

Beyer HG and Sendhoff B (2007) Robust optimization – a compre-

hensive survey. Computer Methods in Applied Mechanics and Engi-

neering 196(33): 3190–3218

Table 7. Wilcoxon test results of biogeography-based optimization (BBO) with re-sampling, and BBO using the Kalman filter (KBBO).

Function KBBO vs. BBO (l=5) Function KBBO vs. BBO (l=5) Function KBBO vs. BBO (l=5)

F1 o-X F10 X-o F18 2

F2 X-o F11 o-X F19 X-o

F3 X-o F12 o-X F20 2

F4 X-o F13 X-o F21 X-o

F5 o-X F14 X-o F22 2

F6 2 F15 2 F23 o-X

F7 o-X F16 2 F24 o-X

F8 o-X F17 o-X F25 X-o

F9 X-o 2 2 Total 10, 9

If the difference between the algorithms is significant with a level of significance or less, the pairs are marked as follows: X-o shows that the left

algorithm is significantly better than the right one; and o-X shows that the right algorithm is significantly better than the left one. The ‘Total’ row at

the end of the table shows that KBBO outperforms BBO by a score of 10 to 9.

202 Transactions of the Institute of Measurement and Control 37(2)

Bhattacharya A and Chattopadhyay P (2010) Biogeography-based

optimization for different economic load dispatch problems. IEEE

Transactions on Power Systems 25(2): 1064–1077.

Bratton D and Kennedy J (2007) Defining a standard for particle

swarm optimization. In:Proceedings of IEEE Swarm Intelligence

Symposium, Honolulu, HI, pp. 120–127.

Chen T, He J, Chen G, et al. (2010a) Choosing selection pressure

for wide-gap problems. Theoretical Computer Science 411(6):

926–934.

Chen T, Tang K, Chen G, et al. (2010b) Analysis of computational

time of simple estimation of distribution algorithms. IEEE Trans-

actions on Evolutionary Computation 14(1): 1–22.

Clerc M (2006) Particle Swarm Optimization. London: ISTE

Publishing.

Clerc M and Kennedy J (2002) The particle swarm – Explosion, stabi-

lity and convergence in a multidimensional complex space. IEEE

Transactions on Evolutionary Computation 6(1): 58–73.

Das S and Suganthan PN (2011) Differential evolution – a survey of

the state-of-the-art. IEEE Transactions on Evolutionary Computa-

tion 15(1): 4–31.

Das S, Konar A and Chakraborty U. K (2005) Improved differential

evolution algorithms for handling noisy optimization problems.

In:Proceedings of IEEE Congress on Evolutionary Computation,

Edinburgh, UK, pp. 1691–1698.

Demsar J (2006) Statistical comparisons of classifiers over multiple

data sets. Journal of Machine Learning Research 7: 1–30.

Derrac J, Garcia S, Molina D, et al. (2011) A practical tutorial on the

use of nonparametric statistical tests as a methodology for com-

paring evolutionary and swarm intelligence algorithms. Swarm

and Evolutionary Computation 1(1): 3–18.

Dong W, Chen T, Tino P, et al. (2013) Scaling up estimation of distri-

bution algorithms for continuous optimization. IEEE Transac-

tions on Evolutionary Computation 17(6), 797–822.

Du D (2009) Biogeography-based optimization: synergies with evolu-

tionary strategies, immigration refusal, and Kalman filters. Master’s

thesis, Cleveland State University, Cleveland, OH.

Du D, Simon D and Ergezer M (2009) Biogeography-based optimiza-

tion combined with evolutionary strategy and immigration refu-

sal. In: Proceedings of the IEEE Conference on Systems, Man, and

Cybernetics, San Antonio, TX, pp. 1023–1028.

Eberhart R and Shi Y (2004) Special issue on particle swarm optimiza-

tion. IEEE Transactions on Evolutionary Computation 3(4): 201–228.

Eberhart R, Shi Y and Kennedy J (2001) Swarm Intelligence. San

Mateo, CA: Morgan Kaufmann.

Eberhart RC and Shi Y (2000) Comparing inertia weights and con-

striction factors in particle swarm optimization. IEEE Congress on

Evolutionary Computation, pp. 84–88.

Elton C (1958) Ecology of Invasions by Animals and Plants. London:

Chapman & Hall.

Ergezer M, Simon D and Du D (2009) Oppositional biogeography-

based optimization. In:Proceedings of the IEEE Conference on

Systems, Man, and Cybernetics, San Antonio, TX, pp. 1035–1040.

Fitzpatrick JM and Grefenstette JJ (1988) Genetic algorithms in noisy

environments. Machine Learning 3(2): 101–120.

Hansen N, Niederberger A, Guzzella L, et al. (2009) A method for

handling uncertainty in evolutionary optimization with an appli-

cation to feedback control of combustion. IEEE Transactions on

Evolutionary Computation 13(1): 180–197.

Harding S (2006) Animate Earth. White River Junction, VT: Chelsea

Green Publishing Company.

Jin Y and Branke J (2005) Evolutionary optimization in uncertain

environments – a survey. IEEE Transactions on Evolutionary Com-

putation 9(3): 303–317.

Keel L and Bhattacharyya S (1997) Robust, fragile, or optimal?IEEE

Transactions on Automatic Control 42(8): 1098–1105.

Kheng CW, Chong SY and Lim M (2012) Centroid-based memetic

algorithm – adaptive Lamarckian and Baldwinian learning. Inter-

national Journal of Systems Science 43(7): 1193–1216.

Krink T, Filipic B and Fogel G (2004) Noisy optimization problem –

a particular challenge for differential evolution? In: Proceedings of

the 2004 Congress on Evolutionary Computation, Porland, OR,

pp. 19–23.

Lenton T (1998) Gaia and natural selection. Nature 394(6692):

439–447.

Liu B, Zhang X and Ma H (2008) Hybrid differential evolution for

noisy optimization. In:Proceedings of IEEE Congress on Evolution-

ary Computation, Hong Kong, China, pp. 587–592.

Lovelock J (1990) Hands up for the Gaia hypothesis. Nature

344(6262): 100–102.

Ma H (2010) An analysis of the equilibrium of migration models for

biogeography-based optimization. Information Sciences 180(18):

3444–3464.

Ma H and Simon D (2011) Blended biogeography-based optimization

for constrained optimization. Engineering Applications of Artificial

Intelligence 24(3): 517–525.

MacArthur R (1955) Fluctuations of animal populations and a mea-

sure of community stability. Ecology 36(3): 533–536.

MacArthur R and Wilson E (1963) An equilibrium theory of insular

zoogeography. Evolution 17(4): 373–387.

MacArthur R and Wilson E (1967) The Theory of Island Biogeogra-

phy. Princeton, NJ: Princeton University Press.

Mendel E, Krohling RA and Campos M (2011) Swarm algorithms

with chaotic jumps applied to noisy optimization problems, Infor-

mation Sciences 181(20): 4494–4514.

Mininno E and Neri F (2010) A memetic differential evolution

approach in noisy optimization. Memetic Computing 2(2): 111–135.

Mühlenbein H and Schlierkamp-Voosen D (1993) Predictive models

for the breeder genetic algorithm I: continuous parameter optimi-

zation. Evolutionary Computation 1(1): 25–49.

Neri F, Garcia XT, Cascella GL, et al. (2008) Surrogate assisted local

search in PMSM drive design. COMPEL: The International Jour-

nal for Computation and Mathematics in Electrical and Electronic

Engineering 27(3): 573–592.

Onwubolu G and Babu B (2004) New Optimization Techniques in

Engineering. Berlin: Springer.

Pan H, Wang L and Liu B (2006) Particle swarm optimization for

function optimization in noisy environment. Applied Mathematics

and Computation 181(2): 908–919.

Panchal V, Singh P, Kaur N, et al. (2009) Biogeography based satel-

lite image classification. International Journal of Computer Science

and Information Security 6(2): 269–274.

Particle Swarm Central, http://www.particleswarm.info/.

Pietro A, While L and Barone L (2004) Applying evolutionary algo-

rithms to problems with noisy, time-consuming fitness functions.

In: Proceedings of the 2004 Congress on Evolutionary Computation,

Portland, OR, pp. 1254–1261.

Price K and Storn R (1997) Differential evolution. Dr. Dobb’s Journal

22: 18–20.

Rarick R, Simon D, Villaseca FE, et al. (2009) Biogeography-based

optimization and the solution of the power flow problem. In:Pro-

ceedings of the IEEE Conference on Systems, Man, and Cyber-

netics, San Antonio, TX, pp. 1029–1034.

Schwefel HP (1993) Evolution and Optimum Seeking. New York: John

Wiley & Sons.

Simon D (2006) Optimal State Estimation. New York: John Wiley &

Sons.

Simon D (2008) Biogeography-based optimization. IEEE Transac-

tions on Evolutionary Computation 12(6): 702–713.

Simon D (2013) Evolutionary Optimization Algorithms. New York:

John Wiley & Sons.

Ma et al. 203

Simon D, Ergezer M, Du D, et al. (2011) Markov models for

biogeography-based optimization. IEEE Transactions on Systems,

Man, and Cybernetics, Part B: Cybernetics 41(1): 299–306.

Storn R (1999) System design by constraint adaptation and differen-

tial evolution. IEEE Transactions on Evolutionary Computation

3(1): 22–34.

Stroud P (2001) Kalman-extended genetic algorithm for search in

nonstationary environments with noisy fitness evaluations. IEEE

Transactions on Evolutionary Computation 5(1): 66–77.

Suganthan PN, Hansen N, Liang JJ, et al. (2005) Problem definitions

and evaluation criteria for the CEC 2005 special session on real-

parameter optimization. Technical Report, Nanyang Technologi-

cal University, Singapore.

Whittaker R and Bush M (1993) Dispersal and establishment of tro-

pical forest assemblages, Krakatoa, Indonesia. In: Miles J, and

Walton D (eds) Primary Succession on Land. Oxford: Blackwell

Science, pp. 147–160.

Yao X, Liu Y and Lin G (1999) Evolutionary programming made

faster. IEEE Transactions on Evolutionary Computation 3(2): 82–102.

Yu X, Tang K, Chen T, et al. (2008) Empirical analysis of evolution-

ary algorithms with immigrants schemes for dynamic optimiza-

tion. Memetic Computing 1(1): 3–24.

Zhao SZ, Suganthan PN and Das S (2011) Self-adaptive differential

evolution with multi-trajectory search for large-scale optimiza-

tion. Soft Computing 15(11): 2175–2185.

204 Transactions of the Institute of Measurement and Control 37(2)

