22

23
24
25
26
27
28
29
30
31
32

33

G Model
AS0C22831-9

Applied Soft Computing xxx (2014) XXX—-XXX

journal homepage: www.elsevier.com/locate/asoc

Contents lists available at ScienceDirect

Applied Soft Computing

Robust feedforward and recurrent neural network based dynamic
weighted combination models for software reliability prediction

Pratik Roy?, G.S. Mahapatra®*, Pooja Rani®, S.K. Pandey", K.N. Dey*

a Department of Computer Science and Engineering, University of Calcutta, Kolkata 700009, India
b National Institute of Technology — Puducherry, Karaikal 609605, India

ARTICLE INFO

Article history:

Received 10 January 2013

Received in revised form 29 March 2014
Accepted 11 April 2014

Available online xxx

Keywords:

Software reliability growth model
Dynamic weighted combination model
Artificial neural network

Genetic algorithm

Reliability prediction

ABSTRACT

Traditional parametric software reliability growth models (SRGMs) are based on some assumptions or
distributions and none such single model can produce accurate prediction results in all circumstances.
Non-parametric models like the artificial neural network (ANN) based models can predict software reli-
ability based on only fault history data without any assumptions. In this paper, initially we propose
a robust feedforward neural network (FFNN) based dynamic weighted combination model (PFFNND-
WCM) for software reliability prediction. Four well-known traditional SRGMs are combined based on
the dynamically evaluated weights determined by the learning algorithm of the proposed FFNN. Based
on this proposed FENN architecture, we also propose a robust recurrent neural network (RNN) based
dynamic weighted combination model (PRNNDWCM) to predict the software reliability more justifiably.
A real-coded genetic algorithm (GA) is proposed to train the ANNSs. Predictability of the proposed mod-
els are compared with the existing ANN based software reliability models through three real software
failure data sets. We also compare the performances of the proposed models with the models that can
be developed by combining three or two of the four SRGMs. Comparative studies demonstrate that the
PFFNNDWCM and PRNNDWCM present fairly accurate fitting and predictive capability than the other
existing ANN based models. Numerical and graphical explanations show that PRNNDWCM is promis-
ing for software reliability prediction since its fitting and prediction error is much less relative to the
PFFNNDWCM.

© 2014 Published by Elsevier B.V.

1. Introduction

development process. In the last three decades, many SRGMs have
been proposed in the literature to predict the relationship between

Computer plays an essential role in our modern civilization.
Computer systems are managed by software and hence software
should be reliable and fault free. Perfect measurement of soft-
ware reliability has become one of the most important tasks for
development of good quality software. According to ANSI defini-
tion, software reliability is defined as the probability of failure-free
software operation for a specified period of time in a specified envi-
ronment [1,4]. Software reliability is the most important quality
metric. One can estimate the duration of software testing period
by measuring software reliability. Software reliability prediction
plays a vital role in today’s rapidly growing complex software

* Corresponding author. Tel.: +91 9433135327; fax: +91 4368231665.
E-mail addresses: pratik.roy43@gmail.com (P. Roy), g_s_-mahapatra@yahoo.com
(G.S. Mahapatra), pooja.nitpdy@gmail.com (P. Rani), kndey55@gmail.com
(K.N. Dey).

http://dx.doi.org/10.1016/j.as0c.2014.04.012
1568-4946/© 2014 Published by Elsevier B.V.

software failure and time. The software reliability models can be
divides into parametric and non-parametric model. In parametric
models, the model parameters are estimated based on the assump-
tions about the behavior of the software faults, failure processes
and development environments. The most well-known paramet-
ric models are the nonhomogeneous Poisson process (NHPP) based
SRGMs [9-18]. However, it has been shown that none single model
can produce accurate prediction results in all circumstances [19].
On the other hand, non-parametric model like the ANN based
model comprise the flexibility to predict software reliability based
on only fault history data without any assumptions of the para-
metric model. It has been exposed that ANN based non-parametric
models can produce better predictive quality than the paramet-
ric models [6-8,24]. Different types of FFNNs and RNNs have been
applied to predict cumulative number of detected faults where the
software execution time is used as the input to the network. Sev-
eral approaches have been developed to combine various existing

Please cite this article in press as: P. Roy, et al., Robust feedforward and recurrent neural network based dynamic weighted combination
models for software reliability prediction, Appl. Soft Comput. J. (2014), http://dx.doi.org/10.1016/j.asoc.2014.04.012

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

dx.doi.org/10.1016/j.asoc.2014.04.012
dx.doi.org/10.1016/j.asoc.2014.04.012
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:pratik.roy43@gmail.com
mailto:g_s_mahapatra@yahoo.com
mailto:pooja.nitpdy@gmail.com
mailto:kndey55@gmail.com
dx.doi.org/10.1016/j.asoc.2014.04.012

53
54
55
56
57
58
59
60
61
62
63
64

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82
83
84
85
86
87
88
89
90
91

92
93
94

95

109
110
111
112
113
114

115

G Model
AS0C22831-9

2 P. Roy et al. / Applied Soft Computing xxx (2014) XxXx-xxx

software reliability models to produce a dynamic weighted com-
bination model whose prediction accuracy is much better than the
component models [7,20,21].

In this paper, firstly we propose a robust FFNN based dynamic
weighted combination model for software reliability prediction.
The PFFNNDWCM is constructed by combining the traditional
SRGMs. The SRGMs are merged based on the dynamically evalu-
ated weights determined by the training algorithm of the FFNN.
In this study, we select four well-known traditional paramet-
ric SRGMs to develop the PFFNNDWCM. Based on this proposed
FFNN architecture, we also propose a robust RNN based dynamic
weighted combination model for more accurate prediction of soft-
ware reliability. We construct the proposed FFNN and RNN by
using different activation functions for hidden layer neurons of the
ANNSs. Cumulative software execution time is the input and the pre-
dicted cumulative number of software failures is the output of the
proposed networks. We propose the RNN modeling approach to
learn the temporal patterns of the failure data dynamically which
has a significant impact on network prediction performance. We
propose a real-coded GA based learning algorithm to train the
proposed ANNs using the software failure data sets by globally
optimizing the weights and parameters of the ANNs. We compare
the performances of the proposed models with the existing ANN
based dynamic weighted combination model [7] and ANN ensem-
ble model [8] in the software reliability literature. The proposed
models are also compared with the models that can be derived by
using three or two of the selected four models. We explain the fit-
ting and predictability of the different models through three real
software failure data sets.

The rest of the paper has been organized in the following way:
Section 2 introduces some related works about the application
of ANNs in software reliability prediction. Section 3 presents the
proposed FFNN and RNN based modeling approach for the devel-
opment of the dynamic weighted combination models for software
reliability prediction. In Section4, we propose GA based learning
algorithm to train the proposed FFNN and RNN. Section 5 describes
the nature of the software failure data sets used in the experi-
ments. Section 6 describes the model comparison criteria which are
used to compare the prediction performance of the different mod-
els. Section 7 shows the experimental results based on the three
real software failure data sets and some conclusions are drawn in
Section 8.

2. Literature survey

This section describes some related works where ANNs [2]
have been applied in software reliability modeling and prediction.
Karunanithi et al. [6,22] first proposed ANNs to predict the software
reliability by using the execution time and the cumulative num-
ber of detected faults as the input and the desired output of the
network, respectively. Sitte [23] compared the predictive capabil-
ity of two different software reliability prediction methods: neural
networks and recalibration for parametric models. Khoshgoftaar
and Szabo [25] applied ANN to predict the number of faults in pro-
grams during testing. Cai et al. [26] proposed the back-propagation
algorithm based ANN for software reliability prediction and used
the recent 50 inter-failure times as input to predict the next fail-
ure time. Ho et al. [27] proposed a modified RNN for modeling
and prediction of software failures. Tian and Noore [28,29] pro-
posed an evolutionary ANN modeling approach to predict the
software cumulative failure time based on multiple-delayed-input
single-output architecture. Su and Huang [7]| proposed an ANN
based dynamic weighted combination model for software reli-
ability prediction. Hu et al. [30] applied RNNs to model fault
detection and fault correction processes together. Kiran and Ravi

Table 1
Selected SRGMs with mean value function.

SRGM Mean value function

a(1—ebt)
a(1—(1+bt)e D)
a(1—e~bty

1+pe-bt

Goel-Okumoto model (G)
Yamada delayed s-shaped model (Y)

Inflection s-shaped model (I)
Logistic growth curve model (L)

—a
1+be™

[31] proposed a non-linear ensemble-based approach for software
reliability prediction. Kapur et al. [32] applied ANN methods to
build SRGMs considering faults of different complexity. Zheng [8]
used the ensemble of ANNs to predict software reliability. Kapur
et al. [33] presented a new dimension to build an ensemble of
different ANN for complex software architectures to improve the
estimation accuracy. Li et al. [20] proposed adaboosting-based
approaches for combining the parametric SRGMs to significantly
improve the estimating and forecasting accuracy. Wu et al. [21]
proposed a dynamically-weighted software reliability combination
model to improve the predictive quality. Mohanty et al. [34] pro-
posed novel recurrent architectures for genetic programming and
group method of data handling to predict software reliability.

3. Proposed ANN based software reliability models

We know that none single SRGM can be trusted to produce
accurate prediction results in all circumstances. Here, we pro-
pose FFNN and RNN-based dynamic weighted combination models
which combine the traditional SRGMs to form a dynamic weighted
combination of software reliability models.

We consider four well-known traditional statistical SRGMs
namely, Goel-Okumoto model [9], Yamada delayed s-shaped
model [16], inflection s-shaped model [14] and logistic growth
curve model to develop the dynamic weighted combination models
which can combine the SRGMs based on the dynamically assigned
weights determined by the training of the proposed ANNs.

The mean value function of the selected four SRGMs are given
in Table 1.

3.1. PFFNNDWCM

PFFNNDWCM is constructed as shown in Fig. 1 to develop the
dynamic weighted combination model by combining the selected
four SRGMs. The proposed FFNN has one hidden layer with single
neuron in each of the input and output layers. The hidden layer con-
sists of four neurons representing the four SRGMs to be combined.

Input Layer

Hidden Layer

Output Layer

Fig. 1. PFFNNDWCM architecture.

Please cite this article in press as: P. Roy, et al., Robust feedforward and recurrent neural network based dynamic weighted combination
models for software reliability prediction, Appl. Soft Comput. J. (2014), http://dx.doi.org/10.1016/j.asoc.2014.04.012

116
117
118
119
120
121
122
123
124
125
126
127
128

129

130
131
132
133
134
135
136
137
138
139
140
141

142

143

144
145
146
147
148

dx.doi.org/10.1016/j.asoc.2014.04.012

149
150
151
152
153
154
155
156
157
158
159

160

161

162
163

165
166
167
168
169
170

171

172
173
174
175
176
177
178

179
180
181
182
183
184
185
186
187

G Model
AS0C22831-9

P. Roy et al. / Applied Soft Computing xxx (2014) XxX—xXX 3

Hidden Layer

Input Layer Output Layer

Fig. 2. PRNNDWCM architecture.

The cumulative software execution time (t;) is the input of
the FFNN and output of the FFNN is the predicted cumulative
number of software failures (y;), where i is the cumulative soft-
ware execution time sequence index. We use 1 —e=*,1 —(1+x)e~%,
(1-e)/(1+a;e *)and 1/(1+bye~*) as the activation functions for
the four hidden layer neurons of the proposed FFNN. Here, the
activation functions used for hidden layer neurons are developed
according to the mean value function of the selected SRGMs. Linear
activation function f{x)=x is used in the output layer neuron of the
ANN. Hence, the output of the FFNN can be evaluated as follows:

¥ =ws(1—e ™)+ we(1 — (1 + wat;)e"2")

w7(1 —e~Wshi) wg
1+a;ewsti 1+ bye—Wali

where w; (>0),j=1, 2, ..., 8, are the weights of the FFNN and
their values are determined by the training algorithm. Here, a; and
b1 (ay, b1 >0) are activation function parameters whose values are
also evaluated through the learning of the proposed FFNN.

In this PFFNNDWCM, we merge different traditional exponential
and s-shaped SRGMs based on the proposed FFNN approach and the
weights of each model are determined dynamically by training the
FFNN according to the characteristics of the selected failure data
sets.

(1)

3.2. PRNNDWCM

RNN is a feedback ANN in which the current output/state is a
function of the previous output/state and the current input. RNN
includes the dynamic temporal property internally, which have
great impact on network prediction performance. RNN has the
advantage in feedbacking the data generated by the network to be
used in future iterations and the feedback path enables the network
to learn temporal patterns/sequences dynamically.

3.2.1. Model architecture

We consider that the cumulative number of failures at time t; is
a function of the cumulative number of failures at time t;_; and the
current execution time ¢t;, i.e. y/ = f(y{_;, t;). We need to forecast
y{ by use of y/ ,. We construct the PRNNDWCM which has the
feedback path from the output layer to the hidden layer via the
recurrent neuron denoted by R as shown in Fig. 2.

Similar to the FFNN modeling, the cumulative software execu-
tion time (t;) is the input of the RNN and the predicted cumulative

number of software failures (y) is the output of the RNN. We apply
the activation functions 1 —e™*, 1 —(1+x)e*, (1 —e*)/(1+aye™*)
and 1/(1+bye~*) in the four hidden layer neurons and linear acti-
vation function in the output layer neuron of the RNN. The RNN
has feedback path from the output of the network to the input of
the output layer neuron by which it can recognize the cumulative
number of failures in execution time t;_1. The feedback path allows
the network to employ the previous output of the network in the
current state of the network. Here, wy is the feedback weight deter-
mined by the training algorithm. The output of the RNN is given as
follows:

Y/ = wh(1 —e ™15+ wi(1 — (1 +wht;)e "2")
wi(1 — e Wi w,
+ 1 ;) 8w/ (2)
—W, t; —w' t; 97i-1
1+aye 737 1+ bye ™4t

where wj’. >0, forj=1,2,...,9anday, b,>0.

The values of all the weights and parameters of the RNN are
determined by the learning algorithm and the four SRGMs are com-
bined based on these dynamically evaluated weights in accordance
with the failure data used to train the RNN. This PRNNDWCM has
the capability of incorporating the cumulative number of failures in
previous state/execution time, which immensely control the pre-
dictive power of this model.

4. Network learning through proposed GA

The PFFNNDWCM and PRNNDWCM of software reliability mod-
eling are trained by a proposed real-coded GA [3] which is a robust
evolutionary optimization search technique modeled from natural
genetics to find global optimal solution.

We apply real-coded GA to encode the weights and parameters
of the proposed FFNN and RNN as chromosomes. The chromo-
somal encoding of the weights and parameters of the FFNN
and RNN are given by [w; wy, w3 wy ws wg w7 wg a; bq] and
[w) W) wi w, wi wg W, wg wg ap by, respectively. The hidden
layer activation function parameters of the proposed FFNN and
RNN are also combined with the weights of the ANNs in the chro-
mosomal representation to be evaluated by the proposed GA. Each
weight and parameter of the ANNs is represented by a gene of the
chromosomes.

Here, the fitness function of the proposed GA is the network
error function which is to be minimized. We use normalized root
mean square error (NRMSE) generated by the ANN as the error
function as follows:

where n is the number of data points used to train the ANN, y; is the
actual value and m; is the predicted value generated by the ANNs
for the ith data point in the software failure data set. The values of
NRMSE are minimized by the proposed GA during learning of the
each network.

Tournament selection process is used for selection of the parent
chromosomes from the population to be involved in reproduction
processes such as crossover, mutation. After selection, arithmetic
crossover and uniform mutation operations are performed on the
selected parent chromosomes to reproduce more fit individu-
als/chromosomes, i.e. offsprings with higher fitness value. More
better solution can be achieved as the generation number of the
GA increases. The GA will be stopped when the desired stopping
criteria has been satisfied.

Because of the stochastic nature of GA, 100 trials have been
performed for 1000 generations as the maximum number of

Please cite this article in press as: P. Roy, et al., Robust feedforward and recurrent neural network based dynamic weighted combination
models for software reliability prediction, Appl. Soft Comput. J. (2014), http://dx.doi.org/10.1016/j.asoc.2014.04.012

188
189
190
191
192
193
194
195
196
197
198
199

200

201

)
S
51

204
205
206
207
208
209

210

211
212
213
214
215
216
217
218
219
220

222
223
224
225
226
227
228

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

dx.doi.org/10.1016/j.asoc.2014.04.012

246
247
248
249
250
251

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

276

271

278

279

293

296
297

298

299

300

302

G Model
AS0C22831-9

4 P. Roy et al. / Applied Soft Computing xxx (2014) XxX—xXX

generations in each trial and the best solution from among the 100
trials is considered as the final optimal solution.

GA implementation for training of FFNN and RNN for soft-
ware reliability prediction:

The proposed real-coded GA to train the PFFNNDWCM and PRN-
NDWCM is described below:

Step 1: Initialize the parameters of the GA as follows:

population _size =40, crossover _rate =0.9, mutation _rate=0.01 and
max _gen=1000, where max _gen represents the maximum num-
ber of generations.

Step 2: Setgn =1, where gn denotes the current generation number.
Step 3: Encode the weights and parameters of the ANN into chro-
mosome.

Step 4: Generate the initial population by initializing the chromo-
somes for the population.

Step 5: Evaluate the fitness value of each chromosome in the pop-
ulation by considering the fitness function (3).

Step 6: Select parent chromosomes from the population by tour-
nament selection process of size 3.

Step 7: Apply arithmetic crossover and uniform mutation opera-
tions on the selected parent chromosomes with the crossover _rate
and mutation _rate, respectively, to produce offsprings with higher
fitness value.

Step 8: If the termination criteria is satisfied, go to step 11.

Step 9: Increase gn by unity.

Step 10: Go to step 5.

Step 11: Evaluate the fitness value of each offspring in the popula-
tion.

Step 12: Return the chromosome with best fitness value (which is
the optimal setting of the weights and parameters for the ANN).
Step 13: Stop.

5. Software failure data

Software failure may occur during the testing process due to
the hidden faults in the software. The software failure data are nor-
mally arranged in pairs {t;, y;} where y; is the cumulative number
of failures in the software execution time t; and i is the cumulative
software execution time sequence index. The objective of software
reliability prediction is to accurately predict the number of failures
in the future execution time based on the historical software fail-
ure data. In this experiment, three real software failure data sets
DS1, DS2 and DS3 are used to check the performance and validity
of the PFFNNDWCM and PRNNDWCM. The description of the data
sets are given below.

e Data Set-1(DS1): This data set was reported by Musa [5] based on
the 136 failures observed from a real-time command and control
system with 21,700 assembly instructions.

e Data Set-2(DS2): This data set was collected (Musa et al. [5]) from
a military application with 61,900 instructions and 38 failures.

e Data Set-3(DS3): This data set by Lyu [1] was collected from a
single-user workstation with 397 failures.

The cumulative software execution time (t;) and the cumulative
number of failures (y;) of each data set are normalized in the range
of [0, 1] before feeding to the ANNSs.

6. Model performance measures

Some meaningful performance comparison criteria are needed
to compare the fitting and predictive powers of the different
ANN based software reliability models under consideration. In this

experiment, we adopt the variable-term prediction and end-point
prediction approaches.

6.1. Fitting performance

The fitting performance of an ANN based software reliability
model demonstrates how much fit the model to the software failure
data. To evaluate the fitting performance, first the ANN is trained
using a part of the failure data (training data). The trained ANN is
then used to estimate the same failure data which was used to train
the ANN. The estimated failure number m; at the execution time t;
is compared with the actual failure number y; from the data set. The
fitting performance of an ANN based model is measured in terms
of the relative error (RE) and average error (AE) as follows:

REi=’mi_yi’x100 (4)
Vi
] n
AE = EZRE,- (5)
i=1

where n is the number of data points used to train the ANN and to
be estimated.

6.2. Variable-term prediction

In this approach, only part of the failure data is used to train the
ANN. Then, the trained ANN is used to predict the rest of the failure
data. The predicted failure number m; at the execution time ¢; is
compared with the actual failure number y; from the data set. The
variable-term predictability of a model is measured in terms of the
relative error (RE) and average error (AE) as follows:

p
1
AE = EzREi (6)
i=

where p is the number of data points to be predicted.

6.3. End-point prediction

The end-point prediction is determined by assuming that x fail-
ures have been observed at the end of the testing time ty and using
the available failure data upto time t, (t, <tx) to predict the num-
ber of failures at the time ty. We apply different sizes of training
patterns to train the ANN. In the trained ANN, we employ the end
of the testing time tx as input to predict the number of failures at
the time tx. The predicted value is compared with the actual value x.
Predictive validity can be checked by RE for different values of t, [4].

7. Performance analysis

The performances of the PFEFNNDWCM and PRNNDWCM are
compared with the ANN based dynamic weighted combinational
model (DWCM) [7] and the neural network ensembles model
(NNEM) [8] in the software reliability literature. We also compare
the fitting performance and predictability of the proposed mod-
els with the software reliability models that can be developed by
combining three or two of the selected four SRGMs. The number
of possible combinations is 4C3 +“C, = 10. Here, for performance
analysis, we only choose the following five combinations from the
10 combinations:

GYl, YIL, GY, YI, IL

There are FFNN and RNN based models possible for each of
the above combinations. We represent FFNN and RNN based such

Please cite this article in press as: P. Roy, et al., Robust feedforward and recurrent neural network based dynamic weighted combination
models for software reliability prediction, Appl. Soft Comput. J. (2014), http://dx.doi.org/10.1016/j.asoc.2014.04.012

304

305

306
307
308
309
310
311
312
313
314

315

316

317

318

319

320
321
322
323
324
325

326

328

329
330
331
332
333
334
335

336

337

338
339
340
341
342
343
344
345
346

347

348

349
350

dx.doi.org/10.1016/j.asoc.2014.04.012

352
353
354
355
356

357

358

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
371
378
379

380

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

G Model
AS0C22831-9

P. Roy et al. / Applied Soft Computing xxx (2014) XxX—xXX 5

models as FFNNM and RNNM, respectively. All of these models are
trained by the proposed GA.

DWCM has one hidden layer with three neurons. NNEM contains
19 component ANNs with median combination rule and each ANN
is a three-layer single-input single-output FFNN with five hidden
neurons. There is no activation function parameter for the hidden
layer neurons of the DWCM and NNEM.

7.1. Model validation for DS1

Table 2 demonstrates the fitting performance of the different
models under comparison in terms of AE for different normalized
execution time (NET) values of DS1.

From Table 2, we observe that PFFNNDWCM has smallest AE
value only at NET 0.8. So PFFNNDWCM has best fitting power
in only that execution time. It means that PFFNNDWCM do not
provide good fitting performance in DS1. Again, PRNNDWCM pro-
vides relatively better fitting performance than PFFNNDWCM as
PRNNDWCM has lowest AE values for NETs 0.2, 0.6, 0.9 and 1.0.
Hence, PRNNDWCM provides best fitting capability at the NETs
0.2, 0.6, 0.9 and 1.0. We can also see that DWCM has best fitting
power in the NETs 0.1, 0.3, 0.4, 0.5 and 0.7. The fitting power of the
PFFNNDWCM improves when the execution time increases from
0.1 to 0.8. Fitting capability of the PRNNDWCM increases with the
growth of execution time from 0.4. It is very clear from Table 2
that the software reliability models that are developed by com-
bining three of the four SRGMs, i.e. RNNMgy;, FFNNMgy;, RNNMyp
and FFNNMyy; have better fitting performance than the models that
are developed by combining two of the four SRGMs, i.e. RNNMgy,
FFNNMGy, RNNMyy;, FFNNMy;, RNNMy. and FFNNMj; . Hence, hlgher
fitting performance is achieved by increasing the number of models
to be combined. It is also noted that the fitting power of the RNN
based model is always better than the FFNN based model for each
of the combinations under consideration. The fitting performance
of the PRNNDWCM and PFFNNDWCM are always much better than
the RNNMgy;, FFNNMgy;, RNNMyy, FENNMyy, RNNMgy, FFNNMgy,
RNNMy;, FFNNMy;, RNNMj;. and FENNM;; for all NET values.

Table 3 shows the variable-term prediction in terms of AE and
Table 4 shows the end-point prediction in terms of RE for different
NET values that varies from 0.1 to 0.9.

Table 3 demonstrates that the proposed models have better
predictability than the DWCM and NNEM. PFFNNDWCM has the
smallest AE value at the NET 0.5. So PFFNNDWCM has the best pre-
dictive power at the NET 0.5. The AE values of the PRNNDWCM
are smallest among the AE values of the models under comparison
except at NET 0.5. Hence, it is obviously noted that PRNNDWCM
has the overall better predictive capability than the PFFNNDWCM
which proves the outstanding ability of the RNN in software reli-
ability prediction. The predictive powers of the proposed models
are improved with the growth of execution time from 0.3. From
Table 3, itis also clear that the predictive capability of the RNNMgyj,
FFNNMGYI, RNNMYH_ and FFNNMYH_ are better than the RNNMGy,
FFNNMgy, RNNMy;, FFNNMy;, RNNMj. and FFNNMj;.. So higher pre-
dictability can be achieved by increasing the number of models to
be combined. It is obvious that for all of the combinations under
consideration, the RNN based model has always better predictive
power than the FFNN based model. For all NETs, the PRNNDWCM
and PFFNNDWCM demonstrate enhanced predictive accuracy than
the models that can be developed by combining three or two of the
four SRGM:s.

From Table 4, we observe that the proposed models have much
better end-point prediction capability than the DWCM and NNEM.
PFFNNDWCM has the best end-point predictive power at the NET
0.2. PRNNDWCM has the overall better end-point prediction abil-
ity than the PFFNNDWCM as the RE values of the PRNNDWCM
are smallest among the RE values of the other models under

1

08

08

07¢

06

051

041

03F

02F

Normalized Cumulative Number of Failures

0.1 ——— Actual Value
Predicted Value

00 02 04 06 08 1

Normalized Execution Time

Fig. 3. Prediction curve of PRNNDWCM for DS1.

consideration except at NET 0.2. The end-point predictive powers
of the proposed models are increased with the growth of exe-
cution time. Table 4 also proves that the proposed RNN has the
best software reliability prediction capability than the FFNN. It is
clearly visible that the models that are developed by combining
three of the four models have better end-point predictive capabil-
ity than the models that are developed by combining two of the four
models. Hence, higher end-point predictability can be achieved by
increasing the number of component models to be combined. It is
also clear that the RNN based model has better end-point predic-
tive power than the FFNN based model for all of the combinations
under consideration. It is obvious that for all NETs, the PRNNDWCM
and PFFNNDWCM have better end-point predictive capability than
the RNNMgy;, FENNMgy;, RNNMy;, FENNMy;, RNNMcy, FFNNMcy,
RNNMy, FFNNMy;, RNNM. and FFNNMj;.

Fig. 3 shows the prediction curve of the PRNNDWCM which has
the best predictive capability among the models under consider-
ation for DS1.

From Fig. 3, we find that the PRNNDWCM has the excellent pre-
diction ability compared to the observed values from the data set
DS1.

Therelative prediction error (RPE) curves of the different models
under comparison are shown in Fig. 4. Here, we only compare the
proposed models with the DWCM and NNEM as we have already
seen from Tables 2-4 that the performances of the PRNNDWCM and
PFFNNDWCM are always much better than the models that can be
constructed by combining three or two of the selected four SRGMs.

From Fig. 4, we see that the proposed models have smaller RPEs
than the DWCM and NNEM. It is also noted that the PRNNDWCM
has much lesser RPE than the other models which again establishes
the excellent software reliability predictive power of the proposed
RNN.

7.2. Model validation for DS2

Now the PRNNDWCM and PFENNDWCM are only compared
with the DWCM and NNEM as it is obvious from the experimen-
tal results for DS1 that the proposed models have always superior
fitting and predictive accuracy (for all NET values) than the soft-
ware reliability models that can be developed by combining three
or two of the selected four SRGM:s.

Table 5 shows the fitting performance of the different software
reliability models under comparison in terms of AE for different
NET values of DS2.

Please cite this article in press as: P. Roy, et al., Robust feedforward and recurrent neural network based dynamic weighted combination
models for software reliability prediction, Appl. Soft Comput. J. (2014), http://dx.doi.org/10.1016/j.asoc.2014.04.012

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

430

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446

447

448
449
450
451
452
453

454

456

dx.doi.org/10.1016/j.asoc.2014.04.012

G Model

ASOC22831-9

6 P. Roy et al. / Applied Soft Computing xxx (2014) xxx—-xxx
Table 2
Q3 Comparison of fitting performance results for DS1.
Model NET
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

PRNNDWCM 5.5776 2.1342 2.7225 4.2255 3.2424 2.1110 2.1033 2.0300 1.2534 1.1128
PEENNDWCM 8.7797 7.1735 5.8202 5.3108 3.2771 2.5720 2.1604 1.2443 1.4096 1.3312
DWCM 3.5816 3.0041 2.3167 2.6459 2.2821 3.2455 1.9021 1.7956 1.5037 1.6453
NNEM 65.0522 40.9960 34.5643 32.0253 28.4014 26.0588 23.3445 22.0056 21.1367 20.7896
RNNMcy 12.1464 8.2065 7.7503 9.9996 8.5725 8.0473 5.8695 5.4728 5.8621 5.2431
FFNNMcy 12,9512 9.6344 8.8697 10.0521 8.6243 9.0381 8.1934 6.0427 7.4602 5.9809
RNNMy 11.6787 9.3328 8.8897 6.7947 9.0466 8.1380 8.1921 7.4822 7.1161 5.9436
FFNNMy;, 12.0325 9.7186 11.9431 9.6813 9.1921 9.0623 8.7358 8.2084 8.0526 7.4586
RNNMcy 19.1590 10.3520 14.3502 10.4281 10.2726 9.4545 9.4031 10.3025 8.8348 7.7932
FFNNMgy 25.5181 11.4169 19.8922 10.4337 10.4497 10.0284 9.7521 13.9143 12.4502 9.4925
RNNMy; 21.3797 14.6847 16.6009 12.0338 9.5251 10.6287 10.2973 13.9443 9.6897 8.0845
FFNNMy, 313714 19.0491 18.7143 12.1408 9.8850 12.7744 16.8856 14.0859 12.1359 8.6374
RNNM; 14.2678 11.6417 13,5112 13.4395 10.8849 14.0632 12.1947 13.0562 11.9345 9.5206
FENNM. 18.9679 13.2086 143028 13.6889 11.6052 15.0933 18.6781 14.0740 13.6135 10.2724

Table 3

Comparison of variable-term predictability for DS1.
Model NET

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

PRNNDWCM 1.9144 2.0188 2.1940 2.0038 1.7728 0.7294 0.5100 0.2823 0.2010
PEENNDWCM 3.3212 2.1905 2.3590 23162 1.4560 0.9735 0.5519 0.4378 0.3131
DWCM 31.1805 25.9846 19.1255 17.2881 13.1873 7.3045 3.4416 2.9249 1.7614
NNEM 24.1533 22.2280 20.9049 15.1608 8.9837 43946 1.5777 0.8479 1.3386
RNNMcy 8.0016 3.5261 25122 2.3483 1.8406 1.9649 1.0981 0.8084 0.4776
FFNNMcy 8.2103 4.5563 33776 2.5555 2.2445 2.1938 2.1792 0.8983 0.5377
RNNMy;; 5.8694 2.9078 3.7543 2.8498 2.5644 1.2347 0.6856 0.6711 0.6163
FFNNMy;_ 6.7924 3.2045 4.3819 2.9854 2.7416 1.5221 1.0084 0.8282 0.7778
RNNMcy 25.0405 6.9065 4.9319 3.7304 2.8814 2.7723 2.6104 1.3050 0.9169
FFNNMgy 32.3466 8.2041 6.1765 3.8442 3.6086 2.8878 2.7872 1.3428 1.1415
RNNMy; 17.3169 5.9523 7.2264 6.8516 3.8857 3.5879 2.1869 1.5134 0.9998
FFNNMy, 18.8365 6.1093 9.4835 7.1780 3.9034 3.7798 2.3000 1.7333 1.2603
RNNM;. 14.4560 8.4623 13.6215 4.8548 4.8161 3.9447 3.5591 1.7160 1.2195
FENNM;. 20.6097 11.9966 17.2859 5.9576 5.4996 41352 6.8183 2.1043 1.4584

Table 4

End-point prediction of software reliability for DS1.
Model NET

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

PRNNDWCM 0.2275 0.1958 0.0731 0.0316 0.0234 0.0163 0.0054 0.0030 0.0022
PEENNDWCM 0.2358 0.0953 0.0817 0.0633 0.0610 0.0455 0.0272 0.0212 0.0165
DWCM 48.0263 36.1886 30.9267 25.7216 19.5971 8.3143 6.1137 3.1769 1.5932
NNEM 34,9391 30.3986 20.1151 16.6727 9.6483 5.4012 2.0059 1.3250 1.4618
RNNMcy 3.9363 3.5290 2.1862 0.7617 0.2230 0.3983 0.3864 0.3565 0.1267
FFNNMcy 6.8821 5.4517 3.6088 23016 0.3709 0.4229 0.5736 0.6453 0.1605
RNNMy;, 6.2929 0.4812 0.0868 2.7021 0.4352 0.5618 0.0967 0.4187 0.0306
FFNNMy;_ 6.7978 1.3338 1.5698 2.7487 0.5324 1.0539 0.5053 0.2772 0.1181
RNNMcy 10.3031 9.6127 5.6254 4.1543 2.0928 2.7745 1.0866 0.8934 0.7624
FFNNMcy 10.7199 11.6561 6.9043 4.5827 2.6775 2.8503 1.8889 1.7668 0.9730
RNNMy; 14.9407 7.1085 11.4412 4.8045 1.5550 1.5931 2.0276 1.8158 1.4809
FFNNMy, 16.3377 8.2594 11.6877 6.9619 1.7000 1.7876 3.1412 2.0835 1.6698
RNNM; 28.1815 18.7682 14.3435 10.0676 52256 4.2669 5.0749 3.4596 1.0028
FENNM. 29.8990 19.6143 14.4609 21.2308 6.4048 11.1081 6.2983 5.2671 1.2388

Table 5) From Table 5, we can observe that the proposed models have

Comparison of fitting performance results for DS2. better fitting capacity than the DWCM and NNEM in DS2. Again, all
NET PRNNDWCM PFENNDWCM DWCM NNEM AE values of the PRNNDWCM are smallest among the AE values of
01 1.5555 14.9605 18.2784 23.0674 the dlffereqt models ulnder con51der§t10r1. Heqc.e, PRNNDWCM has
0.2 1.0327 12.9713 14.6173 20.5464 the best fitting power in DS2. The fitting capability of PFFNNDWCM
0.3 1.0305 7.2449 9.9645 16.9635 are improved with the growth of execution time from 0.4.
8~‘5‘ ;g;;; é';g;g éig?; 12;‘3‘;‘5‘ Table 6 shows the variable-term prediction in terms of AE and
06 0.1873 S 6.5621 11.4631 Table 7 shows the end-point prediction in terms of RE for different
0.7 05540 40945 5.6794 12.6297 NET values of DS2.
0.8 0.3689 3.8838 5.2756 10.5903 Table 6 demonstrates that the proposed models have better pre-
0.9 0.3969 3.1937 4.7710 10.5048 dictive power than the DWCM and NNEM. The PRNNDWCM has the
1.0 0.1069 2.2358 43043 103753

best software reliability prediction ability because of its minimum

Please cite this article in press as: P. Roy, et al., Robust feedforward and recurrent neural network based dynamic weighted combination
models for software reliability prediction, Appl. Soft Comput. J. (2014), http://dx.doi.org/10.1016/j.asoc.2014.04.012

457
458
459
460
461
462
463
464
465
466
467
468

dx.doi.org/10.1016/j.asoc.2014.04.012

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487

G Model
AS0C22831-9

P. Roy et al. / Applied Soft Computing xxx (2014) XxXx-xxx

8
i}
c
2
o
T
o
a
[
= -
®
D
m B
\ ——NNEM
08 |J ——DWCM L
: ——PFFNNDWCM
—— PRNNDWCM
Il 1 1 1 1 1 1 I I
-10 0.1 02 03 04 05 06 07 08 08 1
Normalized Execution Time
Fig. 4. RPE curves of different software reliability models for DS1.
Table 6
Comparison of variable-term predictability for DS2.

NET PRNNDWCM PFFNNDWCM DWCM NNEM
0.1 3.4073 6.0156 10.8748 8.2058
0.2 0.3691 4.7483 7.2511 10.5845
0.3 1.0075 2.7003 3.6476 6.0227
0.4 0.9890 2.3971 9.5089 4.3772
0.5 0.8897 2.6346 6.7021 5.9463
0.6 0.1051 2.5704 5.5145 6.0819
0.7 0.2220 1.0521 3.6977 1.2171
0.8 0.1445 0.2019 1.0138 1.1987
0.9 0.0108 0.1087 0.2210 1.2242

AE values compared to the other software reliability models. Hence,
itis also proved for DS2 that the proposed RNN has the best software
reliability predictive power than the FFNN. The predictive power of
the PFFNNDWCM is increased as the execution time is raised from
0.5. PRNNDWCM shows increasing prediction capability from the
NET 0.7.

From Table 7, we observe that the proposed models have much
better end-point predictive power than the DWCM and NNEM.
PFFNNDWCM has the best end-point prediction capability at the
NET 0.1. The RE values of the PRNNDWCM are smallest among the
RE values of the models under comparison except at NET 0.1. Hence,
itis easily seen that the PRNNDWCM has the overall best end-point
predictive performance than the other models.

Fig. 5 shows the prediction curve of the PRNNDWCM for DS2.

From Fig. 5, we find that the PRNNDWCM has excellent predic-
tion capability compared to the observed values from the data set
DS2.

The RPE curves of the different models under consideration are
shown in Fig. 6.

Table 7

End-point prediction of software reliability for DS2.
NET PRNNDWCM PFENNDWCM DWCM NNEM
0.1 0.7702 0.5769 10.8623 5.7650
0.2 0.2409 0.5761 6.1479 5.8947
0.3 0.1352 0.5906 4.6289 4.6501
0.4 0.0534 0.1793 12.5512 11.4849
0.5 0.0440 0.0744 7.1566 10.7432
0.6 0.0498 0.0721 7.1354 6.2275
0.7 0.0091 0.0202 4.2067 1.5212
0.8 0.0192 0.0294 0.3680 0.9588
0.9 0.0064 0.0107 0.2834 1.0578

1

09 q
08F B
07r 1
06 i
05} E
04 E
03r B
02r B
Predicted Value

0 02 04 06 08 1
Normalized Execution Time

Normalized Cumulative Number of Failures

Fig. 5. Prediction curve of PRNNDWCM for DS2.

From Fig. 6, we see that the proposed models have smaller RPEs
than the DWCM and NNEM. The PRNNDWCM has the smallest RPE
than the other models which again establishes that the proposed
RNN has the best software reliability prediction capability than the

FFNN.

o
=)
T

o
o
T

o
n
T

o
N
T

Relative Prediction Error
o

02t
\
TN
||]
06 \g‘ |
V ——NNEM

08l ——DWCM
——PFFNNDWCM
——PRNNDWCM

Kl I I I I

| L | I I
0 0.1 02 03 04 05 06 07 08 08
Normalized Execution Time

Fig. 6. RPE curves of different software reliability models for DS2.

Table 8

Comparison of fitting performance results for DS3.
NET PRNNDWCM PFFNNDWCM DWCM NNEM
0.1 8.9606 13.8850 25.7359 47.0375
0.2 8.3661 10.6617 24.9427 37.5333
0.3 7.8941 8.9816 22.1860 35.2792
0.4 7.5021 8.1000 23.8398 30.8718
0.5 7.6505 8.9565 21.2922 29.4203
0.6 7.0797 8.0227 20.0959 28.0453
0.7 6.8224 9.3592 18.1551 26.2632
0.8 4.1726 8.6939 19.8555 243311
0.9 0.4883 7.7570 16.8434 29.9379
1.0 0.1792 7.6700 15.2561 27.9877

Please cite this article in press as: P. Roy, et al., Robust feedforward and recurrent neural network based dynamic weighted combination
models for software reliability prediction, Appl. Soft Comput. J. (2014), http://dx.doi.org/10.1016/j.asoc.2014.04.012

488
489
490
491

492

dx.doi.org/10.1016/j.asoc.2014.04.012

493

494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

520

522
523
524
525
526
527
528
529
530
531

G Model
AS0C22831-9

8 P. Roy et al. / Applied Soft Computing xxx (2014) XxXx-xxx
Table 9 1
Comparison of variable-term predictability for DS3.
174 Og L
NET PRNNDWCM PFFNNDWCM DWCM NNEM £
0.1 7.0158 10.2244 18.7082 18.5530 £ 08f
0.2 2.1472 2.6195 10.6521 17.4699 5
03 1.2199 1.1148 6.2989 15.4188 B0
0.4 1.0072 1.1152 3.4242 2.9721 E 5
0.5 0.9061 1.0001 3.3188 2.5781 e
0.6 0.7550 0.6037 0.8505 2.3684 2 .l
0.7 0.6617 0.5608 1.7783 2.0781 g
0.8 0.2731 0.5252 0.5333 1.5566 g 04l
0.9 0.1279 0.1643 0.3957 1.3222 3
B 03f
N
o 8 0ol i
7.3. Model validation for DS3 g 02
(=]
. . Z o1y ———Actual Value
Table 8 shows the fitting performance of the various software Predicted Value
reliability models under comparison in terms of AE for different % 03 o o8 08 g

NET values of DS3.

From Table 8, we observe that the proposed models have better
fitting accuracy than the DWCM and NNEM in DS3. All AE values of
the PRNNDWCM are smallest among the AE values of the different
models under consideration. Hence, the PRNNDWCM has the best
fitting power in DS3 also. The fitting power of the PFFNNDWCM are
improved with the growth of execution time from 0.7. PRNNDWCM
shows increasing fitting accuracy with the growth of NET from 0.5.

Table 9 shows the variable-term predictability in terms of AE
and Table 10 shows the end-point prediction of software reliability
in terms of RE for different NET values of DS3.

Table 9 demonstrates that the proposed models have better soft-
ware reliability prediction capability than the DWCM and NNEM.
PFFNNDWCM has the smallest AE values in the NETs 0.3, 0.6 and
0.7.So PFFNNDWCM has the best predictive power at the NETs 0.3,
0.6 and 0.7 of DS3. The PRNNDWCM has the best predictive power
at the NETs 0.1, 0.2, 0.4, 0.5, 0.8 and 0.9 because of its lowest AE
values in that execution times. We can find that the PRNNDWCM
has the overall better predictive capability than the PFENNDWCM.
The predictive power of the PFFNNDWCM is improved with the
growth of NET from 0.4. PRNNDWCM shows increasing prediction
accuracy with the rising execution time.

From Table 10, we observe that the proposed models have much
better end-point prediction capability than the DWCM and NNEM.
PFFNNDW(CM has the best end-point predictive power at the NETs
0.4and 0.8. PRNNDWCM has the overall better end-point prediction
ability than the PFFNNDWCM as the RE values of the PRNNDWCM
are smallest among the RE values of the models under consideration
except at NETs 0.4 and 0.8. The end-point predictive power of the
PFFNNDWCM is increased with the growth of execution time.

Fig. 7 shows the prediction curve of the PRNNDWCM which
has the best software reliability prediction capability among the
models under consideration for DS3.

From Fig. 7, we conclude that the PRNNDWCM has the outstand-
ing prediction ability compared to the observed failure data from
DS3.

Table 10

End-point prediction of software reliability for DS3.
NET PRNNDWCM PFENNDWCM DWCM NNEM
0.1 0.2866 2.4396 22.0868 15.4520
0.2 0.2515 0.8627 20.9103 14.7059
0.3 0.2162 0.2452 11.0076 11.7712
0.4 0.2089 0.1581 8.5497 47663
0.5 0.1054 0.1471 9.0611 3.4339
0.6 0.0129 0.0806 5.8323 4.5190
0.7 0.0167 0.0481 24122 2.6376
0.8 0.1710 0.0184 2.9903 2.6065
0.9 0.0020 0.0111 0.3239 2.1024

Normalized Execution Time

Fig. 7. Prediction curve of PRNNDWCM for DS3.

08

06

04

02

-02

Relative Prediction Error
o

-04 -

-0.6 i
——NNEM

-08 ——DWCM L
——PFFNNDWCM
—— PRNNDWCM

o 1 L 1 1 1 L 1 T T
10 01 02 03 04 05 06 07 08 09 1

Normalized Execution Time

Fig. 8. RPE curves of different software reliability models for DS3.

The RPE curves of the different models under comparison are
shown in Fig. 8.

From Fig. 8, we conclude that the proposed models have lower
RPEs than the DWCM and NNEM. We also conclude that the PRNND-
WCM has much lower RPE than the other models which conforms
the fact that the proposed RNN can be a better software reliability
predictor than the FFNN.

8. Conclusion

In this paper, we have developed robust feedforward and recur-
rent neural network based dynamic weighted combination models
to improve the software reliability prediction accuracy. Four tra-
ditional software reliability growth models have been combined
based on the dynamically evaluated weights determined by the
learning algorithm of the proposed feedforward and recurrent
neural networks. We construct the recurrent neural network archi-
tecture based on the proposed feedforward neural network to
predict software reliability more precisely by learning the dynamic
temporal patterns of the failure data. We propose a real-coded
genetic algorithm based learning algorithm to train the proposed
artificial neural networks using the software failure data. The

Please cite this article in press as: P. Roy, et al., Robust feedforward and recurrent neural network based dynamic weighted combination
models for software reliability prediction, Appl. Soft Comput. J. (2014), http://dx.doi.org/10.1016/j.asoc.2014.04.012

532
533
534
535
536

538

539

540
541
542
543
544
545
546
547
548
549
550
551

dx.doi.org/10.1016/j.asoc.2014.04.012

552
553
554
555
556
557
558
559
560
561
562
563

564

565
566
567
568
569

570
571
R4

573

576

592

G Model
AS0C22831-9

P. Roy et al. / Applied Soft Computing xxx (2014) XxXx-xxx 9

experimental results from the applications to three real soft-
ware failure data sets demonstrate that the proposed feedforward
and recurrent neural network based dynamic weighted combi-
nation models have better software reliability predictive quality
than the other artificial neural network based software reliabil-
ity models. Proposed recurrent neural network based dynamic
weighted combination model achieves significantly lower predic-
tion error relative to the proposed feedforward neural network
based dynamic weighted combination model, which establishes
that the proposed recurrent neural network architecture has the
best predictive power and is optimistic for software reliability
prediction.

Acknowledgements

The authors are heartily thankful to the editor-in-chief, Prof.
R. Roy and reviewers for their detailed and constructive valu-
able comments that help us to improve the quality of the paper.
This research work is supported by the Council of Scientific
and Industrial Research of India under the research Project No.
25(0191)/10/EMR-IL

References

[1] M.R. Lyu, Handbook of Software Reliability Engineering, McGraw-Hill, 1996.

[2] S. Haykin, Neural Networks and Learning Machines, Prentice Hall, 2012.

[3] S. Rajasekaran, G.A.V. Pai, Neural Networks, Fuzzy Logic, and Genetic Algo-
rithms Synthesis and Applications, Prentice Hall, 2011.

[4]].D. Musa, Software Reliability Engineering: More Reliable Software, Faster
Development and Testing, McGraw-Hill, 2004.

[5] J.D. Musa, A. lannino, K. Okumoto, Software Reliability Measurement, Predic-
tion and Application, McGraw-Hill, 1987.

[6] N.Karunanithi, D. Whitley, Y.K. Malaiya, Prediction of software reliability using
connectionist models, IEEE Trans. Softw. Eng. 18 (1992) 563-574.

[7] Y.S. Su, C.Y. Huang, Neural-network-based approaches for software reliability
estimation using dynamic weighted combinational models, J. Syst. Softw. 80
(2007) 606-615.

[8] J. Zheng, Predicting software reliability with neural network ensembles, Expert
Syst. Appl. 36 (2009) 2116-2122.

[9] A.L.Goel, K. Okumoto, Time-dependent error-detection rate model for software
reliability and other performance measures, IEEE Trans. Reliab. 28 (3) (1979)
206-211.

[10] M. Xie, Software Reliability Modeling, World Scientific, 1991.

[11] H. Pham, System Software Reliability, Springer, 2006.

[12] C.Y. Huang, S.Y. Kuo, Analysis of incorporating logistic testing effort function
into software reliability modeling, IEEE Trans. Reliab. 51 (3) (2002) 261-270.

[13] C.Y. Huang, M.R. Lyu, S.Y. Kuo, A unified scheme of some nonhomogeneous
Poisson process models for software reliability estimation, IEEE Trans. Softw.
Eng. 29 (3) (2003) 261-269.

[14] M. Ohba, Inflection S-Shaped Software Reliability Growth Models, Stochastic
Models in Reliability Theory, Springer, 1984, pp. 44-162.

[15] P.Roy, G.S. Mahapatra, K.N. Dey, An S-shaped software reliability model with
imperfect debugging and improved testing learning process, Int. J. Reliab. Saf.
7 (4) (2013) 372-387.

[16] S.Yamada, M. Ohba, S. Osaki, S-shaped software reliability growth models and
their applications, IEEE Trans. Reliab. R-33 (4) (1984) 289-292.

[17] Y.K. Malaiya, M.N. Li,].M. Bieman, R. Karcich, Software reliability growth with
test coverage, IEEE Trans. Reliab. 51 (2002) 420-426.

[18] H. Pham, L. Nordmann, X.M. Zhang, A general imperfect software-debugging
model with s-shaped fault detection rate, IEEE Trans. Reliab. 48 (2) (1999)
169-175.

[19] S.M. Li, Q. Yin, P. Guo, M.R. Lyu, A hierarchical mixture model for software
reliability prediction, Appl. Math. Comput. 185 (2007) 1120-1130.

[20] H.Li, M. Zeng, M. Lu, X. Hu, Z. Li, Adaboosting-based dynamic weighted com-
bination of software reliability growth models, Qual. Reliab. Eng. Int. 28 (1)
(2012) 67-84.

[21] W. Wu, K. Han, C. He, S. Wu, A dynamically-weighted software reliability
combination model, in: International Conference on Quality, Reliability, Risk,
Maintenance, and Safety Engineering (ICQR2MSE), 2012, pp. 148-151.

[22] N.Karunanithi, Y.K. Malaiya, Neural networks for software reliability engineer-
ing, in: Handbook of Software Reliability Engineering, McGraw-Hill, 1996, pp.
699-728.

[23] R. Sitte, Comparison of software-reliability-growth predictions: neural
networks vs parametric recalibration, IEEE Trans. Reliab. 48 (3)(1999) 285-291.

[24] T.M. Khoshgoftaar, R.M. Szabo, Predicting software quality, during testing,
using neural network models: a comparative study, Int. J. Reliab. Qual. Saf. Eng.
1(1994) 303-319.

[25] T.M.Khoshgoftaar, R.M. Szabo, Using neural networks to predict software faults
during testing, IEEE Trans. Reliab. 45 (3) (1996) 456-462.

[26] K.Y. Cai, L. Cai, W.D. Wang, Z.Y. Yu, D. Zhang, On the neural network approach
in software reliability modeling, J. Syst. Softw. 58 (2001) 47-62.

[27] S.L. Ho, M. Xie, T.N. Goh, A study of the connectionist models for software
reliability prediction, Comput. Math. Appl. 46 (2003) 1037-1045.

[28] L.Tian, A.Noore, On-line prediction of software reliability using an evolutionary
connectionist model, J. Syst. Softw. 77 (2005) 173-180.

[29] L. Tian, A. Noore, Evolutionary neural network modeling for software cumula-
tive failure time prediction, Reliab. Eng. Syst. Saf. 87 (2005) 45-51.

[30] Q.P. Hu, M. Xie, S.H. Ng, G. Levitin, Robust recurrent neural network modeling
for software fault detection and correction prediction, Reliab. Eng. Syst. Saf. 92
(2007) 332-340.

[31] N.R.Kiran, V.Ravi, Software reliability prediction by soft computing techniques,
J. Syst. Softw. 81 (4) (2008) 576-583.

[32] P.K. Kapur, S.K. Khatri, M. Basirzadeh, Software reliability assessment using
artificial neural network based flexible model incorporating faults of different
complexity, Int. J. Reliab. Qual. Saf. Eng. 15 (2) (2008) 113-127.

[33] P.K. Kapur, V.S.S. Yadavalli, S.K. Khatri, M. Basirzadeh, Enhancing software
reliability of a complex software system architecture using artificial neural-
networks ensemble, Int.]. Reliab. Qual. Saf. Eng. 18 (3) (2011) 271-284.

[34] R. Mohanty, V. Ravi, M.R. Patra, Hybrid intelligent systems for predicting soft-
ware reliability, Appl. Soft Comput. 13 (1) (2013) 189-200.

Please cite this article in press as: P. Roy, et al., Robust feedforward and recurrent neural network based dynamic weighted combination
models for software reliability prediction, Appl. Soft Comput. J. (2014), http://dx.doi.org/10.1016/j.asoc.2014.04.012

593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620

622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646

dx.doi.org/10.1016/j.asoc.2014.04.012

	Robust feedforward and recurrent neural network based dynamic weighted combination models for software reliability prediction
	1 Introduction
	2 Literature survey
	3 Proposed ANN based software reliability models
	3.1 PFFNNDWCM
	3.2 PRNNDWCM
	3.2.1 Model architecture

	4 Network learning through proposed GA
	5 Software failure data
	6 Model performance measures
	6.1 Fitting performance
	6.2 Variable-term prediction
	6.3 End-point prediction

	7 Performance analysis
	7.1 Model validation for DS1
	7.2 Model validation for DS2
	7.3 Model validation for DS3

	8 Conclusion
	Acknowledgements
	References

