
A

RQ1

w

PQ2

a

b

a

A
R
R
A
A

K
S
D
A
G
R

1

C
s
w
d
t
s
r
m
b
p

(
(

h
1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33
ARTICLE IN PRESSG Model
SOC 2283 1–9

Applied Soft Computing xxx (2014) xxx–xxx

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

obust feedforward and recurrent neural network based dynamic
eighted combination models for software reliability prediction

ratik Roya, G.S. Mahapatrab,∗, Pooja Ranib, S.K. Pandeyb, K.N. Deya

Department of Computer Science and Engineering, University of Calcutta, Kolkata 700009, India
National Institute of Technology – Puducherry, Karaikal 609605, India

 r t i c l e i n f o

rticle history:
eceived 10 January 2013
eceived in revised form 29 March 2014
ccepted 11 April 2014
vailable online xxx

eywords:
oftware reliability growth model
ynamic weighted combination model
rtificial neural network
enetic algorithm
eliability prediction

a b s t r a c t

Traditional parametric software reliability growth models (SRGMs) are based on some assumptions or
distributions and none such single model can produce accurate prediction results in all circumstances.
Non-parametric models like the artificial neural network (ANN) based models can predict software reli-
ability based on only fault history data without any assumptions. In this paper, initially we propose
a robust feedforward neural network (FFNN) based dynamic weighted combination model (PFFNND-
WCM) for software reliability prediction. Four well-known traditional SRGMs are combined based on
the dynamically evaluated weights determined by the learning algorithm of the proposed FFNN. Based
on this proposed FFNN architecture, we also propose a robust recurrent neural network (RNN) based
dynamic weighted combination model (PRNNDWCM) to predict the software reliability more justifiably.
A real-coded genetic algorithm (GA) is proposed to train the ANNs. Predictability of the proposed mod-
els are compared with the existing ANN based software reliability models through three real software
failure data sets. We also compare the performances of the proposed models with the models that can

be developed by combining three or two of the four SRGMs. Comparative studies demonstrate that the
PFFNNDWCM and PRNNDWCM present fairly accurate fitting and predictive capability than the other
existing ANN based models. Numerical and graphical explanations show that PRNNDWCM is promis-
ing for software reliability prediction since its fitting and prediction error is much less relative to the
PFFNNDWCM.

© 2014 Published by Elsevier B.V.

34

35

36

37

38

39

40

41

42

43
. Introduction

Computer plays an essential role in our modern civilization.
omputer systems are managed by software and hence software
hould be reliable and fault free. Perfect measurement of soft-
are reliability has become one of the most important tasks for
evelopment of good quality software. According to ANSI defini-
ion, software reliability is defined as the probability of failure-free
oftware operation for a specified period of time in a specified envi-
onment [1,4]. Software reliability is the most important quality
Please cite this article in press as: P. Roy, et al., Robust feedforward and
models for software reliability prediction, Appl. Soft Comput. J. (2014

etric. One can estimate the duration of software testing period
y measuring software reliability. Software reliability prediction
lays a vital role in today’s rapidly growing complex software

∗ Corresponding author. Tel.: +91 9433135327; fax: +91 4368231665.
E-mail addresses: pratik.roy43@gmail.com (P. Roy), g s mahapatra@yahoo.com

G.S. Mahapatra), pooja.nitpdy@gmail.com (P. Rani), kndey55@gmail.com
K.N. Dey).

ttp://dx.doi.org/10.1016/j.asoc.2014.04.012
568-4946/© 2014 Published by Elsevier B.V.

44

45

46

47

48
development process. In the last three decades, many SRGMs have
been proposed in the literature to predict the relationship between
software failure and time. The software reliability models can be
divides into parametric and non-parametric model. In parametric
models, the model parameters are estimated based on the assump-
tions about the behavior of the software faults, failure processes
and development environments. The most well-known paramet-
ric models are the nonhomogeneous Poisson process (NHPP) based
SRGMs [9–18]. However, it has been shown that none single model
can produce accurate prediction results in all circumstances [19].
On the other hand, non-parametric model like the ANN based
model comprise the flexibility to predict software reliability based
on only fault history data without any assumptions of the para-
metric model. It has been exposed that ANN based non-parametric
models can produce better predictive quality than the paramet-
 recurrent neural network based dynamic weighted combination
), http://dx.doi.org/10.1016/j.asoc.2014.04.012

ric models [6–8,24]. Different types of FFNNs and RNNs have been
applied to predict cumulative number of detected faults where the
software execution time is used as the input to the network. Sev-
eral approaches have been developed to combine various existing

49

50

51

52

dx.doi.org/10.1016/j.asoc.2014.04.012
dx.doi.org/10.1016/j.asoc.2014.04.012
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:pratik.roy43@gmail.com
mailto:g_s_mahapatra@yahoo.com
mailto:pooja.nitpdy@gmail.com
mailto:kndey55@gmail.com
dx.doi.org/10.1016/j.asoc.2014.04.012

 IN PRESSG Model
A

2 Computing xxx (2014) xxx–xxx

s
b
c

w
T
S
a
I
r
F
w
w
u
A
d
p
l
h
p
p
o
t
b
b
m
u
t
s

S
o
p
o
r
a
t
m
u
e
r
S

2

h
K
r
b
n
i
n
a
g
a
t
u
a
p
s
s
b
a
d

Table 1
Selected SRGMs with mean value function.

SRGM Mean value function

Goel–Okumoto model (G) a(1 − e−bt)
Yamada delayed s-shaped model (Y) a(1 − (1 + bt)e−bt)

a(1−e−bt)

four SRGMs. The proposed FFNN has one hidden layer with single
neuron in each of the input and output layers. The hidden layer con-
sists of four neurons representing the four SRGMs to be combined.

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148
ARTICLESOC 2283 1–9

 P. Roy et al. / Applied Soft

oftware reliability models to produce a dynamic weighted com-
ination model whose prediction accuracy is much better than the
omponent models [7,20,21].

In this paper, firstly we propose a robust FFNN based dynamic
eighted combination model for software reliability prediction.

he PFFNNDWCM is constructed by combining the traditional
RGMs. The SRGMs are merged based on the dynamically evalu-
ted weights determined by the training algorithm of the FFNN.
n this study, we select four well-known traditional paramet-
ic SRGMs to develop the PFFNNDWCM. Based on this proposed
FNN architecture, we also propose a robust RNN based dynamic
eighted combination model for more accurate prediction of soft-
are reliability. We construct the proposed FFNN and RNN by
sing different activation functions for hidden layer neurons of the
NNs. Cumulative software execution time is the input and the pre-
icted cumulative number of software failures is the output of the
roposed networks. We propose the RNN modeling approach to

earn the temporal patterns of the failure data dynamically which
as a significant impact on network prediction performance. We
ropose a real-coded GA based learning algorithm to train the
roposed ANNs using the software failure data sets by globally
ptimizing the weights and parameters of the ANNs. We compare
he performances of the proposed models with the existing ANN
ased dynamic weighted combination model [7] and ANN ensem-
le model [8] in the software reliability literature. The proposed
odels are also compared with the models that can be derived by

sing three or two of the selected four models. We explain the fit-
ing and predictability of the different models through three real
oftware failure data sets.

The rest of the paper has been organized in the following way:
ection 2 introduces some related works about the application
f ANNs in software reliability prediction. Section 3 presents the
roposed FFNN and RNN based modeling approach for the devel-
pment of the dynamic weighted combination models for software
eliability prediction. In Section 4, we propose GA based learning
lgorithm to train the proposed FFNN and RNN. Section 5 describes
he nature of the software failure data sets used in the experi-

ents. Section 6 describes the model comparison criteria which are
sed to compare the prediction performance of the different mod-
ls. Section 7 shows the experimental results based on the three
eal software failure data sets and some conclusions are drawn in
ection 8.

. Literature survey

This section describes some related works where ANNs [2]
ave been applied in software reliability modeling and prediction.
arunanithi et al. [6,22] first proposed ANNs to predict the software
eliability by using the execution time and the cumulative num-
er of detected faults as the input and the desired output of the
etwork, respectively. Sitte [23] compared the predictive capabil-

ty of two different software reliability prediction methods: neural
etworks and recalibration for parametric models. Khoshgoftaar
nd Szabo [25] applied ANN to predict the number of faults in pro-
rams during testing. Cai et al. [26] proposed the back-propagation
lgorithm based ANN for software reliability prediction and used
he recent 50 inter-failure times as input to predict the next fail-
re time. Ho et al. [27] proposed a modified RNN for modeling
nd prediction of software failures. Tian and Noore [28,29] pro-
osed an evolutionary ANN modeling approach to predict the
oftware cumulative failure time based on multiple-delayed-input
Please cite this article in press as: P. Roy, et al., Robust feedforward and
models for software reliability prediction, Appl. Soft Comput. J. (2014

ingle-output architecture. Su and Huang [7] proposed an ANN
ased dynamic weighted combination model for software reli-
bility prediction. Hu et al. [30] applied RNNs to model fault
etection and fault correction processes together. Kiran and Ravi
Inflection s-shaped model (I)
1+ˇe−bt

Logistic growth curve model (L) a
1+be−ct

[31] proposed a non-linear ensemble-based approach for software
reliability prediction. Kapur et al. [32] applied ANN methods to
build SRGMs considering faults of different complexity. Zheng [8]
used the ensemble of ANNs to predict software reliability. Kapur
et al. [33] presented a new dimension to build an ensemble of
different ANN for complex software architectures to improve the
estimation accuracy. Li et al. [20] proposed adaboosting-based
approaches for combining the parametric SRGMs to significantly
improve the estimating and forecasting accuracy. Wu et al. [21]
proposed a dynamically-weighted software reliability combination
model to improve the predictive quality. Mohanty et al. [34] pro-
posed novel recurrent architectures for genetic programming and
group method of data handling to predict software reliability.

3. Proposed ANN based software reliability models

We know that none single SRGM can be trusted to produce
accurate prediction results in all circumstances. Here, we pro-
pose FFNN and RNN-based dynamic weighted combination models
which combine the traditional SRGMs to form a dynamic weighted
combination of software reliability models.

We consider four well-known traditional statistical SRGMs
namely, Goel–Okumoto model [9], Yamada delayed s-shaped
model [16], inflection s-shaped model [14] and logistic growth
curve model to develop the dynamic weighted combination models
which can combine the SRGMs based on the dynamically assigned
weights determined by the training of the proposed ANNs.

The mean value function of the selected four SRGMs are given
in Table 1.

3.1. PFFNNDWCM

PFFNNDWCM is constructed as shown in Fig. 1 to develop the
dynamic weighted combination model by combining the selected
 recurrent neural network based dynamic weighted combination
), http://dx.doi.org/10.1016/j.asoc.2014.04.012

Fig. 1. PFFNNDWCM architecture.

dx.doi.org/10.1016/j.asoc.2014.04.012

ARTICLE ING Model
ASOC 2283 1–9

P. Roy et al. / Applied Soft Comp

t
n
w
(
t
a
a
a
A

y

w
t
b
a

a
w
F
s

3

f
i
g
a
u
t

3

a
c
y
f
r

t

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241
Fig. 2. PRNNDWCM architecture.

The cumulative software execution time (ti) is the input of
he FFNN and output of the FFNN is the predicted cumulative
umber of software failures (y′

i
), where i is the cumulative soft-

are execution time sequence index. We use 1 − e−x, 1 − (1 + x)e−x,
1 − e−x)/(1 + a1e−x) and 1/(1 + b1e−x) as the activation functions for
he four hidden layer neurons of the proposed FFNN. Here, the
ctivation functions used for hidden layer neurons are developed
ccording to the mean value function of the selected SRGMs. Linear
ctivation function f(x) = x is used in the output layer neuron of the
NN. Hence, the output of the FFNN can be evaluated as follows:

′
i = w5(1 − e−w1ti) + w6(1 − (1 + w2ti)e

−w2ti)

+ w7(1 − e−w3ti)
1 + a1e−w3ti

+ w8

1 + b1e−w4ti
(1)

here wj (> 0), j = 1, 2, . . ., 8, are the weights of the FFNN and
heir values are determined by the training algorithm. Here, a1 and
1 (a1, b1 > 0) are activation function parameters whose values are
lso evaluated through the learning of the proposed FFNN.

In this PFFNNDWCM, we merge different traditional exponential
nd s-shaped SRGMs based on the proposed FFNN approach and the
eights of each model are determined dynamically by training the

FNN according to the characteristics of the selected failure data
ets.

.2. PRNNDWCM

RNN is a feedback ANN in which the current output/state is a
unction of the previous output/state and the current input. RNN
ncludes the dynamic temporal property internally, which have
reat impact on network prediction performance. RNN has the
dvantage in feedbacking the data generated by the network to be
sed in future iterations and the feedback path enables the network
o learn temporal patterns/sequences dynamically.

.2.1. Model architecture
We consider that the cumulative number of failures at time ti is

 function of the cumulative number of failures at time ti−1 and the
urrent execution time ti, i.e. y′′

i
= f (y′′

i−1, ti). We need to forecast
′′
i

by use of y′′
i−1. We construct the PRNNDWCM which has the
Please cite this article in press as: P. Roy, et al., Robust feedforward and
models for software reliability prediction, Appl. Soft Comput. J. (2014

eedback path from the output layer to the hidden layer via the
ecurrent neuron denoted by R as shown in Fig. 2.

Similar to the FFNN modeling, the cumulative software execu-
ion time (ti) is the input of the RNN and the predicted cumulative
 PRESS
uting xxx (2014) xxx–xxx 3

number of software failures (y′′
i
) is the output of the RNN. We apply

the activation functions 1 − e−x, 1 − (1 + x)e−x, (1 − e−x)/(1 + a2e−x)
and 1/(1 + b2e−x) in the four hidden layer neurons and linear acti-
vation function in the output layer neuron of the RNN. The RNN
has feedback path from the output of the network to the input of
the output layer neuron by which it can recognize the cumulative
number of failures in execution time ti−1. The feedback path allows
the network to employ the previous output of the network in the
current state of the network. Here, w′

9 is the feedback weight deter-
mined by the training algorithm. The output of the RNN is given as
follows:

y′′
i = w′

5(1 − e−w′
1

ti) + w′
6(1 − (1 + w′

2ti)e
−w′

2
ti)

+ w′
7(1 − e−w′

3
ti)

1 + a2e−w′
3

ti
+ w′

8

1 + b2e−w′
4

ti
+ w′

9y′′
i−1 (2)

where w′
j

> 0, for j = 1, 2, . . ., 9 and a2, b2 > 0.
The values of all the weights and parameters of the RNN are

determined by the learning algorithm and the four SRGMs are com-
bined based on these dynamically evaluated weights in accordance
with the failure data used to train the RNN. This PRNNDWCM has
the capability of incorporating the cumulative number of failures in
previous state/execution time, which immensely control the pre-
dictive power of this model.

4. Network learning through proposed GA

The PFFNNDWCM and PRNNDWCM of software reliability mod-
eling are trained by a proposed real-coded GA [3] which is a robust
evolutionary optimization search technique modeled from natural
genetics to find global optimal solution.

We apply real-coded GA to encode the weights and parameters
of the proposed FFNN and RNN as chromosomes. The chromo-
somal encoding of the weights and parameters of the FFNN
and RNN are given by [w1 w2 w3 w4 w5 w6 w7 w8 a1 b1] and
[w′

1 w′
2 w′

3 w′
4 w′

5 w′
6 w′

7 w′
8 w′

9 a2 b2], respectively. The hidden
layer activation function parameters of the proposed FFNN and
RNN are also combined with the weights of the ANNs in the chro-
mosomal representation to be evaluated by the proposed GA. Each
weight and parameter of the ANNs is represented by a gene of the
chromosomes.

Here, the fitness function of the proposed GA is the network
error function which is to be minimized. We use normalized root
mean square error (NRMSE) generated by the ANN as the error
function as follows:

NRMSE =

√∑n
i=1(mi − yi)

2∑n
i=1y2

i

(3)

where n is the number of data points used to train the ANN, yi is the
actual value and mi is the predicted value generated by the ANNs
for the ith data point in the software failure data set. The values of
NRMSE are minimized by the proposed GA during learning of the
each network.

Tournament selection process is used for selection of the parent
chromosomes from the population to be involved in reproduction
processes such as crossover, mutation. After selection, arithmetic
crossover and uniform mutation operations are performed on the
selected parent chromosomes to reproduce more fit individu-
als/chromosomes, i.e. offsprings with higher fitness value. More
better solution can be achieved as the generation number of the
 recurrent neural network based dynamic weighted combination
), http://dx.doi.org/10.1016/j.asoc.2014.04.012

GA increases. The GA will be stopped when the desired stopping
criteria has been satisfied.

Because of the stochastic nature of GA, 100 trials have been
performed for 1000 generations as the maximum number of

242

243

244

245

dx.doi.org/10.1016/j.asoc.2014.04.012

 ING Model
A

4 Comp

g
t

w

N

5

t
m
o
s
r
i
u
D
o
s

•

•

•

n
o

6

t
A

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347
ARTICLESOC 2283 1–9

 P. Roy et al. / Applied Soft

enerations in each trial and the best solution from among the 100
rials is considered as the final optimal solution.

GA implementation for training of FFNN and RNN for soft-
are reliability prediction:

The proposed real-coded GA to train the PFFNNDWCM and PRN-
DWCM is described below:

Step 1: Initialize the parameters of the GA as follows:
population size = 40, crossover rate = 0.9, mutation rate = 0.01 and
max gen = 1000, where max gen represents the maximum num-
ber of generations.
Step 2: Set gn = 1, where gn denotes the current generation number.
Step 3: Encode the weights and parameters of the ANN into chro-
mosome.
Step 4: Generate the initial population by initializing the chromo-
somes for the population.
Step 5: Evaluate the fitness value of each chromosome in the pop-
ulation by considering the fitness function (3).
Step 6: Select parent chromosomes from the population by tour-
nament selection process of size 3.
Step 7: Apply arithmetic crossover and uniform mutation opera-
tions on the selected parent chromosomes with the crossover rate
and mutation rate, respectively, to produce offsprings with higher
fitness value.
Step 8: If the termination criteria is satisfied, go to step 11.
Step 9: Increase gn by unity.
Step 10: Go to step 5.
Step 11: Evaluate the fitness value of each offspring in the popula-
tion.
Step 12: Return the chromosome with best fitness value (which is
the optimal setting of the weights and parameters for the ANN).
Step 13: Stop.

. Software failure data

Software failure may occur during the testing process due to
he hidden faults in the software. The software failure data are nor-

ally arranged in pairs {ti, yi} where yi is the cumulative number
f failures in the software execution time ti and i is the cumulative
oftware execution time sequence index. The objective of software
eliability prediction is to accurately predict the number of failures
n the future execution time based on the historical software fail-
re data. In this experiment, three real software failure data sets
S1, DS2 and DS3 are used to check the performance and validity
f the PFFNNDWCM and PRNNDWCM. The description of the data
ets are given below.

Data Set-1(DS1): This data set was reported by Musa [5] based on
the 136 failures observed from a real-time command and control
system with 21,700 assembly instructions.
Data Set-2(DS2): This data set was collected (Musa et al. [5]) from
a military application with 61,900 instructions and 38 failures.
Data Set-3(DS3): This data set by Lyu [1] was collected from a
single-user workstation with 397 failures.

The cumulative software execution time (ti) and the cumulative
umber of failures (yi) of each data set are normalized in the range
f [0, 1] before feeding to the ANNs.

. Model performance measures
Please cite this article in press as: P. Roy, et al., Robust feedforward and
models for software reliability prediction, Appl. Soft Comput. J. (2014

Some meaningful performance comparison criteria are needed
o compare the fitting and predictive powers of the different
NN based software reliability models under consideration. In this
 PRESS
uting xxx (2014) xxx–xxx

experiment, we adopt the variable-term prediction and end-point
prediction approaches.

6.1. Fitting performance

The fitting performance of an ANN based software reliability
model demonstrates how much fit the model to the software failure
data. To evaluate the fitting performance, first the ANN is trained
using a part of the failure data (training data). The trained ANN is
then used to estimate the same failure data which was used to train
the ANN. The estimated failure number mi at the execution time ti
is compared with the actual failure number yi from the data set. The
fitting performance of an ANN based model is measured in terms
of the relative error (RE) and average error (AE) as follows:

REi =
∣∣∣mi − yi

yi

∣∣∣ × 100 (4)

AE = 1
n

n∑
i=1

REi (5)

where n is the number of data points used to train the ANN and to
be estimated.

6.2. Variable-term prediction

In this approach, only part of the failure data is used to train the
ANN. Then, the trained ANN is used to predict the rest of the failure
data. The predicted failure number mi at the execution time ti is
compared with the actual failure number yi from the data set. The
variable-term predictability of a model is measured in terms of the
relative error (RE) and average error (AE) as follows:

AE = 1
p

p∑
i=1

REi (6)

where p is the number of data points to be predicted.

6.3. End-point prediction

The end-point prediction is determined by assuming that x fail-
ures have been observed at the end of the testing time tx and using
the available failure data upto time te (te ≤ tx) to predict the num-
ber of failures at the time tx. We apply different sizes of training
patterns to train the ANN. In the trained ANN, we employ the end
of the testing time tx as input to predict the number of failures at
the time tx. The predicted value is compared with the actual value x.
Predictive validity can be checked by RE for different values of te [4].

7. Performance analysis

The performances of the PFFNNDWCM and PRNNDWCM are
compared with the ANN based dynamic weighted combinational
model (DWCM) [7] and the neural network ensembles model
(NNEM) [8] in the software reliability literature. We also compare
the fitting performance and predictability of the proposed mod-
els with the software reliability models that can be developed by
combining three or two of the selected four SRGMs. The number
of possible combinations is 4C3 + 4C2 = 10. Here, for performance
analysis, we only choose the following five combinations from the
10 combinations:
 recurrent neural network based dynamic weighted combination
), http://dx.doi.org/10.1016/j.asoc.2014.04.012

GYI, YIL, GY, YI, IL

There are FFNN and RNN based models possible for each of
the above combinations. We represent FFNN and RNN based such

348

349

350

dx.doi.org/10.1016/j.asoc.2014.04.012

 IN PRESSG Model
A

 Computing xxx (2014) xxx–xxx 5

m
t

1
i
n
l

7

m
e

v
i
p
v
P
H
0
p
P
0
g
t
b
a
a
F
fi
t
b
o
o
t
R

T
N

p
s
d
a
e
h
w
a
a
T
F
F
d
b
c
p
a
t
f

b
P
0
i
a

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452
ARTICLESOC 2283 1–9

P. Roy et al. / Applied Soft

odels as FFNNM and RNNM, respectively. All of these models are
rained by the proposed GA.

DWCM has one hidden layer with three neurons. NNEM contains
9 component ANNs with median combination rule and each ANN

s a three-layer single-input single-output FFNN with five hidden
eurons. There is no activation function parameter for the hidden

ayer neurons of the DWCM and NNEM.

.1. Model validation for DS1

Table 2 demonstrates the fitting performance of the different
odels under comparison in terms of AE for different normalized

xecution time (NET) values of DS1.
From Table 2, we observe that PFFNNDWCM has smallest AE

alue only at NET 0.8. So PFFNNDWCM has best fitting power
n only that execution time. It means that PFFNNDWCM do not
rovide good fitting performance in DS1. Again, PRNNDWCM pro-
ides relatively better fitting performance than PFFNNDWCM as
RNNDWCM has lowest AE values for NETs 0.2, 0.6, 0.9 and 1.0.
ence, PRNNDWCM provides best fitting capability at the NETs
.2, 0.6, 0.9 and 1.0. We can also see that DWCM has best fitting
ower in the NETs 0.1, 0.3, 0.4, 0.5 and 0.7. The fitting power of the
FFNNDWCM improves when the execution time increases from
.1 to 0.8. Fitting capability of the PRNNDWCM increases with the
rowth of execution time from 0.4. It is very clear from Table 2
hat the software reliability models that are developed by com-
ining three of the four SRGMs, i.e. RNNMGYI, FFNNMGYI, RNNMYIL
nd FFNNMYIL have better fitting performance than the models that
re developed by combining two of the four SRGMs, i.e. RNNMGY,
FNNMGY, RNNMYI, FFNNMYI, RNNMIL and FFNNMIL. Hence, higher
tting performance is achieved by increasing the number of models
o be combined. It is also noted that the fitting power of the RNN
ased model is always better than the FFNN based model for each
f the combinations under consideration. The fitting performance
f the PRNNDWCM and PFFNNDWCM are always much better than
he RNNMGYI, FFNNMGYI, RNNMYIL, FFNNMYIL, RNNMGY, FFNNMGY,
NNMYI, FFNNMYI, RNNMIL and FFNNMIL for all NET values.

Table 3 shows the variable-term prediction in terms of AE and
able 4 shows the end-point prediction in terms of RE for different
ET values that varies from 0.1 to 0.9.

Table 3 demonstrates that the proposed models have better
redictability than the DWCM and NNEM. PFFNNDWCM has the
mallest AE value at the NET 0.5. So PFFNNDWCM has the best pre-
ictive power at the NET 0.5. The AE values of the PRNNDWCM
re smallest among the AE values of the models under comparison
xcept at NET 0.5. Hence, it is obviously noted that PRNNDWCM
as the overall better predictive capability than the PFFNNDWCM
hich proves the outstanding ability of the RNN in software reli-

bility prediction. The predictive powers of the proposed models
re improved with the growth of execution time from 0.3. From
able 3, it is also clear that the predictive capability of the RNNMGYI,
FNNMGYI, RNNMYIL and FFNNMYIL are better than the RNNMGY,
FNNMGY, RNNMYI, FFNNMYI, RNNMIL and FFNNMIL. So higher pre-
ictability can be achieved by increasing the number of models to
e combined. It is obvious that for all of the combinations under
onsideration, the RNN based model has always better predictive
ower than the FFNN based model. For all NETs, the PRNNDWCM
nd PFFNNDWCM demonstrate enhanced predictive accuracy than
he models that can be developed by combining three or two of the
our SRGMs.

From Table 4, we observe that the proposed models have much
etter end-point prediction capability than the DWCM and NNEM.
Please cite this article in press as: P. Roy, et al., Robust feedforward and
models for software reliability prediction, Appl. Soft Comput. J. (2014

FFNNDWCM has the best end-point predictive power at the NET
.2. PRNNDWCM has the overall better end-point prediction abil-

ty than the PFFNNDWCM as the RE values of the PRNNDWCM
re smallest among the RE values of the other models under
Fig. 3. Prediction curve of PRNNDWCM for DS1.

consideration except at NET 0.2. The end-point predictive powers
of the proposed models are increased with the growth of exe-
cution time. Table 4 also proves that the proposed RNN has the
best software reliability prediction capability than the FFNN. It is
clearly visible that the models that are developed by combining
three of the four models have better end-point predictive capabil-
ity than the models that are developed by combining two of the four
models. Hence, higher end-point predictability can be achieved by
increasing the number of component models to be combined. It is
also clear that the RNN based model has better end-point predic-
tive power than the FFNN based model for all of the combinations
under consideration. It is obvious that for all NETs, the PRNNDWCM
and PFFNNDWCM have better end-point predictive capability than
the RNNMGYI, FFNNMGYI, RNNMYIL, FFNNMYIL, RNNMGY, FFNNMGY,
RNNMYI, FFNNMYI, RNNMIL and FFNNMIL.

Fig. 3 shows the prediction curve of the PRNNDWCM which has
the best predictive capability among the models under consider-
ation for DS1.

From Fig. 3, we find that the PRNNDWCM has the excellent pre-
diction ability compared to the observed values from the data set
DS1.

The relative prediction error (RPE) curves of the different models
under comparison are shown in Fig. 4. Here, we only compare the
proposed models with the DWCM and NNEM as we have already
seen from Tables 2–4 that the performances of the PRNNDWCM and
PFFNNDWCM are always much better than the models that can be
constructed by combining three or two of the selected four SRGMs.

From Fig. 4, we see that the proposed models have smaller RPEs
than the DWCM and NNEM. It is also noted that the PRNNDWCM
has much lesser RPE than the other models which again establishes
the excellent software reliability predictive power of the proposed
RNN.

7.2. Model validation for DS2

Now the PRNNDWCM and PFFNNDWCM are only compared
with the DWCM and NNEM as it is obvious from the experimen-
tal results for DS1 that the proposed models have always superior
fitting and predictive accuracy (for all NET values) than the soft-
ware reliability models that can be developed by combining three
 recurrent neural network based dynamic weighted combination
), http://dx.doi.org/10.1016/j.asoc.2014.04.012

or two of the selected four SRGMs.
Table 5 shows the fitting performance of the different software

reliability models under comparison in terms of AE for different
NET values of DS2.

453

454

455

456

dx.doi.org/10.1016/j.asoc.2014.04.012

Please cite this article in press as: P. Roy, et al., Robust feedforward and
models for software reliability prediction, Appl. Soft Comput. J. (2014

ARTICLE IN PRESSG Model
ASOC 2283 1–9

6 P. Roy et al. / Applied Soft Computing xxx (2014) xxx–xxx

Table 2
Comparison of fitting performance results for DS1.Q3

Model NET

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

PRNNDWCM 5.5776 2.1342 2.7225 4.2255 3.2424 2.1110 2.1033 2.0300 1.2534 1.1128
PFFNNDWCM 8.7797 7.1735 5.8202 5.3108 3.2771 2.5720 2.1604 1.2443 1.4096 1.3312
DWCM 3.5816 3.0041 2.3167 2.6459 2.2821 3.2455 1.9021 1.7956 1.5037 1.6453
NNEM 65.0522 40.9960 34.5643 32.0253 28.4014 26.0588 23.3445 22.0056 21.1367 20.7896
RNNMGYI 12.1464 8.2065 7.7503 9.9996 8.5725 8.0473 5.8695 5.4728 5.8621 5.2431
FFNNMGYI 12.9512 9.6344 8.8697 10.0521 8.6243 9.0381 8.1934 6.0427 7.4602 5.9809
RNNMYIL 11.6787 9.3328 8.8897 6.7947 9.0466 8.1380 8.1921 7.4822 7.1161 5.9436
FFNNMYIL 12.0325 9.7186 11.9431 9.6813 9.1921 9.0623 8.7358 8.2084 8.0526 7.4586
RNNMGY 19.1590 10.3520 14.3502 10.4281 10.2726 9.4545 9.4031 10.3025 8.8348 7.7932
FFNNMGY 25.5181 11.4169 19.8922 10.4337 10.4497 10.0284 9.7521 13.9143 12.4502 9.4925
RNNMYI 21.3797 14.6847 16.6009 12.0338 9.5251 10.6287 10.2973 13.9443 9.6897 8.0845
FFNNMYI 31.3714 19.0491 18.7143 12.1408 9.8850 12.7744 16.8856 14.0859 12.1359 8.6374
RNNMIL 14.2678 11.6417 13.5112 13.4395 10.8849 14.0632 12.1947 13.0562 11.9345 9.5206
FFNNMIL 18.9679 13.2086 14.3028 13.6889 11.6052 15.0933 18.6781 14.0740 13.6135 10.2724

Table 3
Comparison of variable-term predictability for DS1.

Model NET

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

PRNNDWCM 1.9144 2.0188 2.1940 2.0038 1.7728 0.7294 0.5100 0.2823 0.2010
PFFNNDWCM 3.3212 2.1905 2.3590 2.3162 1.4560 0.9735 0.5519 0.4378 0.3131
DWCM 31.1805 25.9846 19.1255 17.2881 13.1873 7.3045 3.4416 2.9249 1.7614
NNEM 24.1533 22.2280 20.9049 15.1608 8.9837 4.3946 1.5777 0.8479 1.3386
RNNMGYI 8.0016 3.5261 2.5122 2.3483 1.8406 1.9649 1.0981 0.8084 0.4776
FFNNMGYI 8.2103 4.5563 3.3776 2.5555 2.2445 2.1938 2.1792 0.8983 0.5377
RNNMYIL 5.8694 2.9078 3.7543 2.8498 2.5644 1.2347 0.6856 0.6711 0.6163
FFNNMYIL 6.7924 3.2045 4.3819 2.9854 2.7416 1.5221 1.0084 0.8282 0.7778
RNNMGY 25.0405 6.9065 4.9319 3.7304 2.8814 2.7723 2.6104 1.3050 0.9169
FFNNMGY 32.3466 8.2041 6.1765 3.8442 3.6086 2.8878 2.7872 1.3428 1.1415
RNNMYI 17.3169 5.9523 7.2264 6.8516 3.8857 3.5879 2.1869 1.5134 0.9998
FFNNMYI 18.8365 6.1093 9.4835 7.1780 3.9034 3.7798 2.3000 1.7333 1.2603
RNNMIL 14.4560 8.4623 13.6215 4.8548 4.8161 3.9447 3.5591 1.7160 1.2195
FFNNMIL 20.6097 11.9966 17.2859 5.9576 5.4996 4.1352 6.8183 2.1043 1.4584

Table 4
End-point prediction of software reliability for DS1.

Model NET

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

PRNNDWCM 0.2275 0.1958 0.0731 0.0316 0.0234 0.0163 0.0054 0.0030 0.0022
PFFNNDWCM 0.2358 0.0953 0.0817 0.0633 0.0610 0.0455 0.0272 0.0212 0.0165
DWCM 48.0263 36.1886 30.9267 25.7216 19.5971 8.3143 6.1137 3.1769 1.5932
NNEM 34.9391 30.3986 20.1151 16.6727 9.6483 5.4012 2.0059 1.3250 1.4618
RNNMGYI 3.9363 3.5290 2.1862 0.7617 0.2230 0.3983 0.3864 0.3565 0.1267
FFNNMGYI 6.8821 5.4517 3.6088 2.3016 0.3709 0.4229 0.5736 0.6453 0.1605
RNNMYIL 6.2929 0.4812 0.0868 2.7021 0.4352 0.5618 0.0967 0.4187 0.0306
FFNNMYIL 6.7978 1.3338 1.5698 2.7487 0.5324 1.0539 0.5053 0.2772 0.1181
RNNMGY 10.3031 9.6127 5.6254 4.1543 2.0928 2.7745 1.0866 0.8934 0.7624
FFNNMGY 10.7199 11.6561 6.9043 4.5827 2.6775 2.8503 1.8889 1.7668 0.9730
RNNMYI 14.9407 7.1085 11.4412 4.8045 1.5550 1.5931 2.0276 1.8158 1.4809
FFNNMYI 16.3377 8.2594 11.6877 6.9619

RNNMIL 28.1815 18.7682 14.3435 10.0676

FFNNMIL 29.8990 19.6143 14.4609 21.2308

Table 5
Comparison of fitting performance results for DS2.

NET PRNNDWCM PFFNNDWCM DWCM NNEM

0.1 1.5555 14.9605 18.2784 23.2674
0.2 1.0327 12.9713 14.6173 20.5464
0.3 1.0305 7.2449 9.9645 16.9635
0.4 1.5711 7.3575 7.6027 13.2474
0.5 0.2779 6.2920 6.4377 14.3375
0.6 0.1873 5.2373 6.5621 11.4631
0.7 0.5540 4.0945 5.6794 12.6297
0.8 0.3689 3.8838 5.2756 10.5903
0.9 0.3969 3.1937 4.7710 10.5048
1.0 0.1069 2.2358 4.3043 10.3753

457

458

459

460

461

462

463

464
1.7000 1.7876 3.1412 2.0835 1.6698
5.2256 4.2669 5.0749 3.4596 1.0028
6.4048 11.1081 6.2983 5.2671 1.2388

From Table 5, we can observe that the proposed models have
better fitting capacity than the DWCM and NNEM in DS2. Again, all
AE values of the PRNNDWCM are smallest among the AE values of
the different models under consideration. Hence, PRNNDWCM has
the best fitting power in DS2. The fitting capability of PFFNNDWCM
are improved with the growth of execution time from 0.4.

Table 6 shows the variable-term prediction in terms of AE and
Table 7 shows the end-point prediction in terms of RE for different
 recurrent neural network based dynamic weighted combination
), http://dx.doi.org/10.1016/j.asoc.2014.04.012

NET values of DS2.
Table 6 demonstrates that the proposed models have better pre-

dictive power than the DWCM and NNEM. The PRNNDWCM has the
best software reliability prediction ability because of its minimum

465

466

467

468

dx.doi.org/10.1016/j.asoc.2014.04.012

ARTICLE IN PRESSG Model
ASOC 2283 1–9

P. Roy et al. / Applied Soft Computing xxx (2014) xxx–xxx 7

Fig. 4. RPE curves of different software reliability models for DS1.

Table 6
Comparison of variable-term predictability for DS2.

NET PRNNDWCM PFFNNDWCM DWCM NNEM

0.1 3.4073 6.0156 10.8748 8.2058
0.2 0.3691 4.7483 7.2511 10.5845
0.3 1.0075 2.7003 3.6476 6.0227
0.4 0.9890 2.3971 9.5089 4.3772
0.5 0.8897 2.6346 6.7021 5.9463
0.6 0.1051 2.5704 5.5145 6.0819

A
i
r
t
0
N

b
P
N
R
i
p

t
D

s

T
E

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492
0.7 0.2220 1.0521 3.6977 1.2171
0.8 0.1445 0.2019 1.0138 1.1987
0.9 0.0108 0.1087 0.2210 1.2242

E values compared to the other software reliability models. Hence,
t is also proved for DS2 that the proposed RNN has the best software
eliability predictive power than the FFNN. The predictive power of
he PFFNNDWCM is increased as the execution time is raised from
.5. PRNNDWCM shows increasing prediction capability from the
ET 0.7.

From Table 7, we observe that the proposed models have much
etter end-point predictive power than the DWCM and NNEM.
FFNNDWCM has the best end-point prediction capability at the
ET 0.1. The RE values of the PRNNDWCM are smallest among the
E values of the models under comparison except at NET 0.1. Hence,

t is easily seen that the PRNNDWCM has the overall best end-point
redictive performance than the other models.

Fig. 5 shows the prediction curve of the PRNNDWCM for DS2.
From Fig. 5, we find that the PRNNDWCM has excellent predic-
Please cite this article in press as: P. Roy, et al., Robust feedforward and
models for software reliability prediction, Appl. Soft Comput. J. (2014

ion capability compared to the observed values from the data set
S2.

The RPE curves of the different models under consideration are
hown in Fig. 6.

able 7
nd-point prediction of software reliability for DS2.

NET PRNNDWCM PFFNNDWCM DWCM NNEM

0.1 0.7702 0.5769 10.8623 5.7650
0.2 0.2409 0.5761 6.1479 5.8947
0.3 0.1352 0.5906 4.6289 4.6501
0.4 0.0534 0.1793 12.5512 11.4849
0.5 0.0440 0.0744 7.1566 10.7432
0.6 0.0498 0.0721 7.1354 6.2275
0.7 0.0091 0.0202 4.2067 1.5212
0.8 0.0192 0.0294 0.3680 0.9588
0.9 0.0064 0.0107 0.2834 1.0578
Fig. 5. Prediction curve of PRNNDWCM for DS2.

From Fig. 6, we see that the proposed models have smaller RPEs
than the DWCM and NNEM. The PRNNDWCM has the smallest RPE
than the other models which again establishes that the proposed
RNN has the best software reliability prediction capability than the
FFNN.
 recurrent neural network based dynamic weighted combination
), http://dx.doi.org/10.1016/j.asoc.2014.04.012

Fig. 6. RPE curves of different software reliability models for DS2.

Table 8
Comparison of fitting performance results for DS3.

NET PRNNDWCM PFFNNDWCM DWCM NNEM

0.1 8.9606 13.8850 25.7359 47.0375
0.2 8.3661 10.6617 24.9427 37.5333
0.3 7.8941 8.9816 22.1860 35.2792
0.4 7.5021 8.1000 23.8398 30.8718
0.5 7.6505 8.9565 21.2922 29.4203
0.6 7.0797 8.0227 20.0959 28.0453
0.7 6.8224 9.3592 18.1551 26.2632
0.8 4.1726 8.6939 19.8555 24.3311
0.9 0.4883 7.7570 16.8434 29.9379
1.0 0.1792 7.6700 15.2561 27.9877

dx.doi.org/10.1016/j.asoc.2014.04.012

ARTICLE IN PRESSG Model
ASOC 2283 1–9

8 P. Roy et al. / Applied Soft Computing xxx (2014) xxx–xxx

Table 9
Comparison of variable-term predictability for DS3.

NET PRNNDWCM PFFNNDWCM DWCM NNEM

0.1 7.0158 10.2244 18.7082 18.5530
0.2 2.1472 2.6195 10.6521 17.4699
0.3 1.2199 1.1148 6.2989 15.4188
0.4 1.0072 1.1152 3.4242 2.9721
0.5 0.9061 1.0001 3.3188 2.5781
0.6 0.7550 0.6037 0.8505 2.3684
0.7 0.6617 0.5608 1.7783 2.0781

7

r
N

fi
t
m
fi
i
s

a
i

w
P
0
0
a
v
h
T
g
a

b
P
0
a
a
e
P

h
m

i
D

T
E

Fig. 7. Prediction curve of PRNNDWCM for DS3.

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537
0.8 0.2731 0.5252 0.5333 1.5566
0.9 0.1279 0.1643 0.3957 1.3222

.3. Model validation for DS3

Table 8 shows the fitting performance of the various software
eliability models under comparison in terms of AE for different
ET values of DS3.

From Table 8, we observe that the proposed models have better
tting accuracy than the DWCM and NNEM in DS3. All AE values of
he PRNNDWCM are smallest among the AE values of the different

odels under consideration. Hence, the PRNNDWCM has the best
tting power in DS3 also. The fitting power of the PFFNNDWCM are

mproved with the growth of execution time from 0.7. PRNNDWCM
hows increasing fitting accuracy with the growth of NET from 0.5.

Table 9 shows the variable-term predictability in terms of AE
nd Table 10 shows the end-point prediction of software reliability
n terms of RE for different NET values of DS3.

Table 9 demonstrates that the proposed models have better soft-
are reliability prediction capability than the DWCM and NNEM.

FFNNDWCM has the smallest AE values in the NETs 0.3, 0.6 and
.7. So PFFNNDWCM has the best predictive power at the NETs 0.3,
.6 and 0.7 of DS3. The PRNNDWCM has the best predictive power
t the NETs 0.1, 0.2, 0.4, 0.5, 0.8 and 0.9 because of its lowest AE
alues in that execution times. We can find that the PRNNDWCM
as the overall better predictive capability than the PFFNNDWCM.
he predictive power of the PFFNNDWCM is improved with the
rowth of NET from 0.4. PRNNDWCM shows increasing prediction
ccuracy with the rising execution time.

From Table 10, we observe that the proposed models have much
etter end-point prediction capability than the DWCM and NNEM.
FFNNDWCM has the best end-point predictive power at the NETs
.4 and 0.8. PRNNDWCM has the overall better end-point prediction
bility than the PFFNNDWCM as the RE values of the PRNNDWCM
re smallest among the RE values of the models under consideration
xcept at NETs 0.4 and 0.8. The end-point predictive power of the
FFNNDWCM is increased with the growth of execution time.

Fig. 7 shows the prediction curve of the PRNNDWCM which
as the best software reliability prediction capability among the
odels under consideration for DS3.
Please cite this article in press as: P. Roy, et al., Robust feedforward and
models for software reliability prediction, Appl. Soft Comput. J. (2014

From Fig. 7, we conclude that the PRNNDWCM has the outstand-
ng prediction ability compared to the observed failure data from
S3.

able 10
nd-point prediction of software reliability for DS3.

NET PRNNDWCM PFFNNDWCM DWCM NNEM

0.1 0.2866 2.4396 22.0868 15.4520
0.2 0.2515 0.8627 20.9103 14.7059
0.3 0.2162 0.2452 11.0076 11.7712
0.4 0.2089 0.1581 8.5497 4.7663
0.5 0.1054 0.1471 9.0611 3.4339
0.6 0.0129 0.0806 5.8323 4.5190
0.7 0.0167 0.0481 2.4122 2.6376
0.8 0.1710 0.0184 2.9903 2.6065
0.9 0.0020 0.0111 0.3239 2.1024

538

539

540

541

542

543

544

545

546

547
Fig. 8. RPE curves of different software reliability models for DS3.

The RPE curves of the different models under comparison are
shown in Fig. 8.

From Fig. 8, we conclude that the proposed models have lower
RPEs than the DWCM and NNEM. We also conclude that the PRNND-
WCM has much lower RPE than the other models which conforms
the fact that the proposed RNN can be a better software reliability
predictor than the FFNN.

8. Conclusion

In this paper, we have developed robust feedforward and recur-
rent neural network based dynamic weighted combination models
to improve the software reliability prediction accuracy. Four tra-
ditional software reliability growth models have been combined
based on the dynamically evaluated weights determined by the
learning algorithm of the proposed feedforward and recurrent
neural networks. We construct the recurrent neural network archi-
tecture based on the proposed feedforward neural network to
 recurrent neural network based dynamic weighted combination
), http://dx.doi.org/10.1016/j.asoc.2014.04.012

predict software reliability more precisely by learning the dynamic
temporal patterns of the failure data. We propose a real-coded
genetic algorithm based learning algorithm to train the proposed
artificial neural networks using the software failure data. The

548

549

550

551

dx.doi.org/10.1016/j.asoc.2014.04.012

 ING Model
A

 Comp

e
w
a
n
t
i
w
t
b
t
b
p

A

R
a
T
a
2

R

Q4

[
[
[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641
ARTICLESOC 2283 1–9

P. Roy et al. / Applied Soft

xperimental results from the applications to three real soft-
are failure data sets demonstrate that the proposed feedforward

nd recurrent neural network based dynamic weighted combi-
ation models have better software reliability predictive quality
han the other artificial neural network based software reliabil-
ty models. Proposed recurrent neural network based dynamic

eighted combination model achieves significantly lower predic-
ion error relative to the proposed feedforward neural network
ased dynamic weighted combination model, which establishes
hat the proposed recurrent neural network architecture has the
est predictive power and is optimistic for software reliability
rediction.

cknowledgements

The authors are heartily thankful to the editor-in-chief, Prof.
. Roy and reviewers for their detailed and constructive valu-
ble comments that help us to improve the quality of the paper.
his research work is supported by the Council of Scientific
nd Industrial Research of India under the research Project No.
5(0191)/10/EMR-II.

eferences

[1] M.R. Lyu, Handbook of Software Reliability Engineering, McGraw-Hill, 1996.
[2] S. Haykin, Neural Networks and Learning Machines, Prentice Hall, 2012.
[3] S. Rajasekaran, G.A.V. Pai, Neural Networks, Fuzzy Logic, and Genetic Algo-

rithms Synthesis and Applications, Prentice Hall, 2011.
[4] J.D. Musa, Software Reliability Engineering: More Reliable Software, Faster

Development and Testing, McGraw-Hill, 2004.
[5] J.D. Musa, A. Iannino, K. Okumoto, Software Reliability Measurement, Predic-

tion and Application, McGraw-Hill, 1987.
[6] N. Karunanithi, D. Whitley, Y.K. Malaiya, Prediction of software reliability using

connectionist models, IEEE Trans. Softw. Eng. 18 (1992) 563–574.
[7] Y.S. Su, C.Y. Huang, Neural-network-based approaches for software reliability

estimation using dynamic weighted combinational models, J. Syst. Softw. 80
(2007) 606–615.

[8] J. Zheng, Predicting software reliability with neural network ensembles, Expert
Syst. Appl. 36 (2009) 2116–2122.

[9] A.L. Goel, K. Okumoto, Time-dependent error-detection rate model for software
reliability and other performance measures, IEEE Trans. Reliab. 28 (3) (1979)
Please cite this article in press as: P. Roy, et al., Robust feedforward and
models for software reliability prediction, Appl. Soft Comput. J. (2014

206–211.
10] M. Xie, Software Reliability Modeling, World Scientific, 1991.
11] H. Pham, System Software Reliability, Springer, 2006.
12] C.Y. Huang, S.Y. Kuo, Analysis of incorporating logistic testing effort function

into software reliability modeling, IEEE Trans. Reliab. 51 (3) (2002) 261–270.

[

[

 PRESS
uting xxx (2014) xxx–xxx 9

13] C.Y. Huang, M.R. Lyu, S.Y. Kuo, A unified scheme of some nonhomogeneous
Poisson process models for software reliability estimation, IEEE Trans. Softw.
Eng. 29 (3) (2003) 261–269.

14] M. Ohba, Inflection S-Shaped Software Reliability Growth Models, Stochastic
Models in Reliability Theory, Springer, 1984, pp. 44–162.

15] P. Roy, G.S. Mahapatra, K.N. Dey, An S-shaped software reliability model with
imperfect debugging and improved testing learning process, Int. J. Reliab. Saf.
7 (4) (2013) 372–387.

16] S. Yamada, M. Ohba, S. Osaki, S-shaped software reliability growth models and
their applications, IEEE Trans. Reliab. R-33 (4) (1984) 289–292.

17] Y.K. Malaiya, M.N. Li, J.M. Bieman, R. Karcich, Software reliability growth with
test coverage, IEEE Trans. Reliab. 51 (2002) 420–426.

18] H. Pham, L. Nordmann, X.M. Zhang, A general imperfect software-debugging
model with s-shaped fault detection rate, IEEE Trans. Reliab. 48 (2) (1999)
169–175.

19] S.M. Li, Q. Yin, P. Guo, M.R. Lyu, A hierarchical mixture model for software
reliability prediction, Appl. Math. Comput. 185 (2007) 1120–1130.

20] H. Li, M. Zeng, M. Lu, X. Hu, Z. Li, Adaboosting-based dynamic weighted com-
bination of software reliability growth models, Qual. Reliab. Eng. Int. 28 (1)
(2012) 67–84.

21] W. Wu, K. Han, C. He, S. Wu, A dynamically-weighted software reliability
combination model, in: International Conference on Quality, Reliability, Risk,
Maintenance, and Safety Engineering (ICQR2MSE), 2012, pp. 148–151.

22] N. Karunanithi, Y.K. Malaiya, Neural networks for software reliability engineer-
ing, in: Handbook of Software Reliability Engineering, McGraw-Hill, 1996, pp.
699–728.

23] R. Sitte, Comparison of software-reliability-growth predictions: neural
networks vs parametric recalibration, IEEE Trans. Reliab. 48 (3) (1999) 285–291.

24] T.M. Khoshgoftaar, R.M. Szabo, Predicting software quality, during testing,
using neural network models: a comparative study, Int. J. Reliab. Qual. Saf. Eng.
1 (1994) 303–319.

25] T.M. Khoshgoftaar, R.M. Szabo, Using neural networks to predict software faults
during testing, IEEE Trans. Reliab. 45 (3) (1996) 456–462.

26] K.Y. Cai, L. Cai, W.D. Wang, Z.Y. Yu, D. Zhang, On the neural network approach
in software reliability modeling, J. Syst. Softw. 58 (2001) 47–62.

27] S.L. Ho, M. Xie, T.N. Goh, A study of the connectionist models for software
reliability prediction, Comput. Math. Appl. 46 (2003) 1037–1045.

28] L. Tian, A. Noore, On-line prediction of software reliability using an evolutionary
connectionist model, J. Syst. Softw. 77 (2005) 173–180.

29] L. Tian, A. Noore, Evolutionary neural network modeling for software cumula-
tive failure time prediction, Reliab. Eng. Syst. Saf. 87 (2005) 45–51.

30] Q.P. Hu, M. Xie, S.H. Ng, G. Levitin, Robust recurrent neural network modeling
for software fault detection and correction prediction, Reliab. Eng. Syst. Saf. 92
(2007) 332–340.

31] N.R. Kiran, V. Ravi, Software reliability prediction by soft computing techniques,
J. Syst. Softw. 81 (4) (2008) 576–583.

32] P.K. Kapur, S.K. Khatri, M. Basirzadeh, Software reliability assessment using
artificial neural network based flexible model incorporating faults of different
complexity, Int. J. Reliab. Qual. Saf. Eng. 15 (2) (2008) 113–127.
 recurrent neural network based dynamic weighted combination
), http://dx.doi.org/10.1016/j.asoc.2014.04.012

33] P.K. Kapur, V.S.S. Yadavalli, S.K. Khatri, M. Basirzadeh, Enhancing software
reliability of a complex software system architecture using artificial neural-
networks ensemble, Int. J. Reliab. Qual. Saf. Eng. 18 (3) (2011) 271–284.

34] R. Mohanty, V. Ravi, M.R. Patra, Hybrid intelligent systems for predicting soft-
ware reliability, Appl. Soft Comput. 13 (1) (2013) 189–200.

642

643

644

645

646

dx.doi.org/10.1016/j.asoc.2014.04.012

	Robust feedforward and recurrent neural network based dynamic weighted combination models for software reliability prediction
	1 Introduction
	2 Literature survey
	3 Proposed ANN based software reliability models
	3.1 PFFNNDWCM
	3.2 PRNNDWCM
	3.2.1 Model architecture

	4 Network learning through proposed GA
	5 Software failure data
	6 Model performance measures
	6.1 Fitting performance
	6.2 Variable-term prediction
	6.3 End-point prediction

	7 Performance analysis
	7.1 Model validation for DS1
	7.2 Model validation for DS2
	7.3 Model validation for DS3

	8 Conclusion
	Acknowledgements
	References

